14 resultados para IgA anti-tissue transglutaminase antibody

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.

In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.

In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.

In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.

In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.

Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While blockade of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) T cell regulatory receptor has become a commonly utilized strategy in the management of advanced melanoma, many questions remain regarding the use of this agent in patient populations with autoimmune disease. We present a case involving the treatment of a patient with stage IV melanoma and ulcerative colitis (UC) with anti-CTLA-4 antibody immunotherapy. Upon initial treatment, the patient developed grade III colitis requiring tumor necrosis factor-alpha (TNF-α) blocking antibody therapy, however re-treatment with anti-CTLA-4 antibody following a total colectomy resulted in a rapid complete response accompanied by the development of a tracheobronchitis, a previously described extra-intestinal manifestation of UC. This case contributes to the evolving literature on the use of checkpoint inhibitors in patients also suffering from autoimmune disease, supports future clinical trials investigating the use of these agents in patients with autoimmune diseases, and suggests that an understanding of the specific molecular pathways involved in a patient's autoimmune pathology may provide insight into the development of more effective novel combinatorial immunotherapeutic strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM: To evaluate pretreatment hepatitis B virus (HBV) testing, vaccination, and antiviral treatment rates in Veterans Affairs patients receiving anti-CD20 Ab for quality improvement. METHODS: We performed a retrospective cohort study using a national repository of Veterans Health Administration (VHA) electronic health record data. We identified all patients receiving anti-CD20 Ab treatment (2002-2014). We ascertained patient demographics, laboratory results, HBV vaccination status (from vaccination records), pharmacy data, and vital status. The high risk period for HBV reactivation is during anti-CD20 Ab treatment and 12 mo follow up. Therefore, we analyzed those who were followed to death or for at least 12 mo after completing anti-CD20 Ab. Pretreatment serologic tests were used to categorize chronic HBV (hepatitis B surface antigen positive or HBsAg+), past HBV (HBsAg-, hepatitis B core antibody positive or HBcAb+), resolved HBV (HBsAg-, HBcAb+, hepatitis B surface antibody positive or HBsAb+), likely prior vaccination (isolated HBsAb+), HBV negative (HBsAg-, HBcAb-), or unknown. Acute hepatitis B was defined by the appearance of HBsAg+ in the high risk period in patients who were pretreatment HBV negative. We assessed HBV antiviral treatment and the incidence of hepatitis, liver failure, and death during the high risk period. Cumulative hepatitis, liver failure, and death after anti-CD20 Ab initiation were compared by HBV disease categories and differences compared using the χ(2) test. Mean time to hepatitis peak alanine aminotransferase, liver failure, and death relative to anti-CD20 Ab administration and follow-up were also compared by HBV disease group. RESULTS: Among 19304 VHA patients who received anti-CD20 Ab, 10224 (53%) had pretreatment HBsAg testing during the study period, with 49% and 43% tested for HBsAg and HBcAb, respectively within 6 mo pretreatment in 2014. Of those tested, 2% (167/10224) had chronic HBV, 4% (326/7903) past HBV, 5% (427/8110) resolved HBV, 8% (628/8110) likely prior HBV vaccination, and 76% (6022/7903) were HBV negative. In those with chronic HBV infection, ≤ 37% received HBV antiviral treatment during the high risk period while 21% to 23% of those with past or resolved HBV, respectively, received HBV antiviral treatment. During and 12 mo after anti-CD20 Ab, the rate of hepatitis was significantly greater in those HBV positive vs negative (P = 0.001). The mortality rate was 35%-40% in chronic or past hepatitis B and 26%-31% in hepatitis B negative. In those pretreatment HBV negative, 16 (0.3%) developed acute hepatitis B of 4947 tested during anti-CD20Ab treatment and follow-up. CONCLUSION: While HBV testing of Veterans has increased prior to anti-CD20 Ab, few HBV+ patients received HBV antivirals, suggesting electronic health record algorithms may enhance health outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that treatment of prostate cancer and melanoma cells expressing GRP78 on their cell surface with antibody directed against the COOH-terminal domain of GRP78 upregulates and activates p53 causing decreased cell proliferation and upregulated apoptosis. In this report, we demonstrate that treatment of 1-LN prostate cancer cells with this antibody decreases cell surface expression of GRP78, Akt(Thr308) and Akt(Ser473) kinase activities and reduces phosphorylation of FOXO, and GSK3beta. This treatment also suppresses activation of ERK1/2, p38 MAPK and MKK3/6; however, it upregulates MKK4 activity. JNK, as determined by its phosphorylation state, is subsequently activated, triggering apoptosis. Incubation of cells with antibody reduced levels of anti-apoptotic Bcl-2, while elevating pro-apoptotic BAD, BAX and BAK expression as well as cleaved caspases-3, -7, -8 and -9. Silencing GRP78 or p53 gene expression by RNAi prior to antibody treatment abrogated these effects. We conclude that antibody directed against the COOH-terminal domain of GRP78 may prove useful as a pan suppressor of proliferative/survival signaling in cancer cells expressing GRP78 on their cell surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from group M (clades A-G) using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG(1) b12, 2G12, 2F5 and 4E10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (T-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (PS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. These results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The conventional treatment protocol in high-intensity focused ultrasound (HIFU) therapy utilizes a dense-scan strategy to produce closely packed thermal lesions aiming at eradicating as much tumor mass as possible. However, this strategy is not most effective in terms of inducing a systemic anti-tumor immunity so that it cannot provide efficient micro-metastatic control and long-term tumor resistance. We have previously provided evidence that HIFU may enhance systemic anti-tumor immunity by in situ activation of dendritic cells (DCs) inside HIFU-treated tumor tissue. The present study was conducted to test the feasibility of a sparse-scan strategy to boost HIFU-induced anti-tumor immune response by more effectively promoting DC maturation. METHODS: An experimental HIFU system was set up to perform tumor ablation experiments in subcutaneous implanted MC-38 and B16 tumor with dense- or sparse-scan strategy to produce closely-packed or separated thermal lesions. DCs infiltration into HIFU-treated tumor tissues was detected by immunohistochemistry and flow cytometry. DCs maturation was evaluated by IL-12/IL-10 production and CD80/CD86 expression after co-culture with tumor cells treated with different HIFU. HIFU-induced anti-tumor immune response was evaluated by detecting growth-retarding effects on distant re-challenged tumor and tumor-specific IFN-gamma-secreting cells in HIFU-treated mice. RESULTS: HIFU exposure raised temperature up to 80 degrees centigrade at beam focus within 4 s in experimental tumors and led to formation of a well-defined thermal lesion. The infiltrated DCs were recruited to the periphery of lesion, where the peak temperature was only 55 degrees centigrade during HIFU exposure. Tumor cells heated to 55 degrees centigrade in 4-s HIFU exposure were more effective to stimulate co-cultured DCs to mature. Sparse-scan HIFU, which can reserve 55 degrees-heated tumor cells surrounding the separated lesions, elicited an enhanced anti-tumor immune response than dense-scan HIFU, while their suppressive effects on the treated primary tumor were maintained at the same level. Flow cytometry analysis showed that sparse-scan HIFU was more effective than dense-scan HIFU in enhancing DC infiltration into tumor tissues and promoting their maturation in situ. CONCLUSION: Optimizing scan strategy is a feasible way to boost HIFU-induced anti-tumor immunity by more effectively promoting DC maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding immune tolerance mechanisms is a major goal of immunology research, but mechanistic studies have generally required the use of mouse models carrying untargeted or targeted antigen receptor transgenes, which distort lymphocyte development and therefore preclude analysis of a truly normal immune system. Here we demonstrate an advance in in vivo analysis of immune tolerance that overcomes these shortcomings. We show that custom superantigens generated by single chain antibody technology permit the study of tolerance in a normal, polyclonal immune system. In the present study we generated a membrane-tethered anti-Igkappa-reactive single chain antibody chimeric gene and expressed it as a transgene in mice. B cell tolerance was directly characterized in the transgenic mice and in radiation bone marrow chimeras in which ligand-bearing mice served as recipients of nontransgenic cells. We find that the ubiquitously expressed, Igkappa-reactive ligand induces efficient B cell tolerance primarily or exclusively by receptor editing. We also demonstrate the unique advantages of our model in the genetic and cellular analysis of immune tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even though the etiology of chronic rejection (CR) is multifactorial, donor specific antibody (DSA) is considered to have a causal effect on CR development. Currently the antibody-mediated mechanisms during CR are poorly understood due to lack of proper animal models and tools. In a clinical setting, we previously demonstrated that induction therapy by lymphocyte depletion, using alemtuzumab (anti-human CD52), is associated with an increased incidence of serum alloantibody, C4d deposition and antibody-mediated rejection in human patients. In this study, the effects of T cell depletion in the development of antibody-mediated rejection were examined using human CD52 transgenic (CD52Tg) mice treated with alemtuzumab. Fully mismatched cardiac allografts were transplanted into alemtuzumab treated CD52Tg mice and showed no acute rejection while untreated recipients acutely rejected their grafts. However, approximately half of long-term recipients showed increased degree of vasculopathy, fibrosis and perivascular C3d depositions at posttransplant day 100. The development of CR correlated with DSA and C3d deposition in the graft. Using novel tracking tools to monitor donor-specific B cells, alloreactive B cells were shown to increase in accordance with DSA detection. The current animal model could provide a means of testing strategies to understand mechanisms and developing therapeutic approaches to prevent chronic rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic allograft rejection is a major impediment to long-term transplant success. Humoral immune responses to alloantigens are a growing clinical problem in transplantation, with mounting evidence associating alloantibodies with the development of chronic rejection. Nearly a third of transplant recipients develop de novo antibodies, for which no established therapies are effective at preventing or eliminating, highlighting the need for a nonhuman primate model of antibody-mediated rejection. In this report, we demonstrate that depletion using anti-CD3 immunotoxin (IT) combined with maintenance immunosuppression that included tacrolimus with or without alefacept reliably prolonged renal allograft survival in rhesus monkeys. In these animals, a preferential skewing toward CD4 repopulation and proliferation was observed, particularly with the addition of alefacept. Furthermore, alefacept-treated animals demonstrated increased alloantibody production (100%) and morphologic features of antibody-mediated injury. In vitro, alefacept was found to enhance CD4 effector memory T cell proliferation. In conclusion, alefacept administration after depletion and with tacrolimus promotes a CD4+memory T cell and alloantibody response, with morphologic changes reflecting antibody-mediated allograft injury. Early and consistent de novo alloantibody production with associated histological changes makes this nonhuman primate model an attractive candidate for evaluating targeted therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

De novo donor-specific antibody (DSA) after organ transplantation promotes antibody-mediated rejection (AMR) and causes late graft loss. Previously, we demonstrated that depletion using anti-CD3 immunotoxin combined with tacrolimus and alefacept (AMR regimen) reliably induced early DSA production with AMR in a nonhuman primate kidney transplant model. Five animals were assigned as positive AMR controls, four received additional belatacept and four received additional anti-CD40 mAb (2C10R4). Notably, production of early de novo DSA was completely attenuated with additional belatacept or 2C10R4 treatment. In accordance with this, while positive controls experienced a decrease in peripheral IgM(+) B cells, bela- and 2C10R4-added groups maintained a predominant population of IgM(+) B cells, potentially indicating decreased isotype switching. Central memory T cells (CD4(+) CD28(+) CD95(+)) as well as PD-1(hi) CD4(+) T cells were decreased in both bela-added and 2C10R4-added groups. In analyzing germinal center (GC) reactions in situ, lymph nodes further revealed a reduction of B cell clonal expansion, GC-follicular helper T (Tfh) cells, and IL-21 production inside GCs with additional belatacept or 2C10R4 treatment. Here we provide evidence that belatacept and 2C10R4 selectively suppresses the humoral response via regulating Tfh cells and prevents AMR in this nonhuman primate model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Proteins that undergo receptor-mediated endocytosis are subject to lysosomal degradation, requiring radioiodination methods that minimize loss of radioactivity from tumor cells after this process occurs. To accomplish this, we developed the residualizing radioiodination agent N(ϵ)-(3-[(*)I]iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-D-GEEEK (Mal-D-GEEEK-[(*)I]IB), which enhanced tumor uptake but also increased kidney activity and necessitates generation of sulfhydryl moieties on the protein. The purpose of the current study was to synthesize and evaluate a new D-amino acid based agent that might avoid these potential problems. METHODS: N(α)-(3-iodobenzoyl)-(5-succinimidyloxycarbonyl)-D-EEEG (NHS-IB-D-EEEG), which contains 3 D-glutamates to provide negative charge and a N-hydroxysuccinimide function to permit conjugation to unmodified proteins, and the corresponding tin precursor were produced by solid phase peptide synthesis and subsequent conjugation with appropriate reagents. Radioiodination of the anti-HER2 antibody trastuzumab using NHS-IB-D-EEEG and Mal-D-GEEEK-IB was compared. Paired-label internalization assays on BT474 breast carcinoma cells and biodistribution studies in athymic mice bearing BT474M1 xenografts were performed to evaluate the two radioiodinated D-peptide trastuzumab conjugates. RESULTS: NHS-[(131)I]IB-D-EEEG was produced in 53.8%±13.4% and conjugated to trastuzumab in 39.5%±7.6% yield. Paired-label internalization assays with trastuzumab-NHS-[(131)I]IB-D-EEEG and trastuzumab-Mal-D-GEEEK-[(125)I]IB demonstrated similar intracellular trapping for both conjugates at 1h ((131)I, 84.4%±6.1%; (125)I, 88.6%±5.2%) through 24h ((131)I, 60.7%±6.8%; (125)I, 64.9%±6.9%). In the biodistribution experiment, tumor uptake peaked at 48 h (trastuzumab-NHS-[(131)I]IB-D-EEEG, 29.8%±3.6%ID/g; trastuzumab-Mal-D-GEEEK-[(125)I]IB, 45.3%±5.3%ID/g) and was significantly higher for (125)I at all time points. In general, normal tissue levels were lower for trastuzumab-NHS-[(131)I]IB-D-EEEG, with the differences being greatest in kidneys ((131)I, 2.2%±0.4%ID/g; (125)I, 16.9%±2.8%ID/g at 144 h). CONCLUSION: NHS-[(131)I]IB-D-EEEG warrants further evaluation as a residualizing radioiodination agent for labeling internalizing antibodies/fragments, particularly for applications where excessive renal accumulation could be problematic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental allergic encephalomyelitis is characterized by invasion of lymphocytes and macrophages into the central nervous system resulting in inflammation, edema, and demyelination. Sera from Lewis rats from 7-95 days after immunization with purified guinea pig CNS myelin were examined with respect to their ability to opsonize myelin. This was correlated with the appearance of antibody components and the relative amounts of antibody to myelin basic protein (MBP) and proteolipid protein (PLP). Sera from rats 10-95 days after immunization preincubated with purified myelin induced phagocytosis of myelin by cultured macrophages with the resulting production of cholesterol ester. This opsonization activity as measured by the percentage of cholesterol esterified reached a peak at 26-27 days after immunization but remained significantly elevated up to 95 days post-immunization compared to the activity of serum from the Freund's adjuvant-injected controls. Immunoblots of the sera revealed a gradual increase in antibody activity against myelin components. ELISA assays for MBP and PLP antibody showed a similar pattern. Antibody to galactocerebroside (GC) was not detected by immunostains nor by the ELISA assay. Areas of demyelination were observed histologically by luxol-fast blue stained spinal cords up to 60 days post-immunization. These results indicate that antibodies to myelin protein when given access to myelin through or within the blood brain barrier could initiate or enhance the phagocytic response by peripheral or resident macrophages.