12 resultados para Glucose transporter

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Serotonin signaling influences social behavior in both human and nonhuman primates. In humans, variation upstream of the promoter region of the serotonin transporter gene (5-HTTLPR) has recently been shown to influence both behavioral measures of social anxiety and amygdala response to social threats. Here we show that length polymorphisms in 5-HTTLPR predict social reward and punishment in rhesus macaques, a species in which 5-HTTLPR variation is analogous to that of humans. Methodology/Principal Findings: In contrast to monkeys with two copies of the long allele (L/L), monkeys with one copy of the short allele of this gene (S/L) spent less time gazing at face than non-face images, less time looking in the eye region of faces, and had larger pupil diameters when gazing at photos of a high versus low status male macaques. Moreover, in a novel primed gambling task, presentation of photos of high status male macaques promoted risk-aversion in S/L monkeys but promoted risk-seeking in L/L monkeys. Finally, as measured by a "pay-per-view" task, S/L monkeys required juice payment to view photos of high status males, whereas L/L monkeys sacrificed fluid to see the same photos. Conclusions/Significance: These data indicate that genetic variation in serotonin function contributes to social reward and punishment in rhesus macaques, and thus shapes social behavior in humans and rhesus macaques alike. © 2009 Watson et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS: Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS: For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS: The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 Acta Materialia Inc.Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical window model for the rodent dorsum was used to perform chronic and quantitative intravital microscopy and laser Doppler flowmetry of microvascular networks adjacent to functional and non-functional glucose sensors. The one-sided configuration afforded direct, real-time observation of the tissue response to bare (unmodified, smooth surface) sensors and sensors coated with porous poly-L-lactic acid (PLLA). Microvessel length density and red blood cell flux (blood perfusion) within 1 mm of the sensors were measured bi-weekly over 2 weeks. When non-functional sensors were fully implanted beneath the windows, the porous coated sensors had two-fold more vasculature and significantly higher blood perfusion than bare sensors on Day 14. When functional sensors were implanted percutaneously, as in clinical use, no differences in baseline current, neovascularization, or tissue perfusion were observed between bare and porous coated sensors. However, percutaneously implanted bare sensors had two-fold more vascularity than fully implanted bare sensors by Day 14, indicating the other factors, such as micromotion, might be stimulating angiogenesis. Despite increased angiogenesis adjacent to percutaneous sensors, modest sensor current attenuation occurred over 14 days, suggesting that factors other than angiogenesis may play a dominant role in determining sensor function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vivo glucose recovery of subcutaneously implanted nitric oxide (NO)-releasing microdialysis probes was evaluated in a rat model using saturated NO solutions to steadily release NO. Such methodology resulted in a constant NO flux of 162 pmol cm(-2) s(-1) from the probe membrane over 8 h of perfusion daily. The in vivo effects of enhanced localized NO were evaluated by monitoring glucose recovery over a 14 day period, with histological analysis thereafter. A difference in glucose recovery was observed starting at 7 days for probes releasing NO relative to controls. Histological analysis at 14 days revealed lessened inflammatory cell density at the probe surface and decreased capsule thickness. Collectively, the results suggest that intermittent sustained NO release from implant surfaces may improve glucose diffusion for subcutaneously implanted sensors by mitigating the foreign body reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation and the formation of an avascular fibrous capsule have been identified as the key factors controlling the wound healing associated failure of implantable glucose sensors. Our aim is to guide advantageous tissue remodeling around implanted sensor leads by the temporal release of dexamethasone (Dex), a potent anti-inflammatory agent, in combination with the presentation of a stable textured surface.

First, Dex-releasing polyurethane porous coatings of controlled pore size and thickness were fabricated using salt-leaching/gas-foaming technique. Porosity, pore size, thickness, drug release kinetics, drug loading amount, and drug bioactivity were evaluated. In vitro sensor functionality test were performed to determine if Dex-releasing porous coatings interfered with sensor performance (increased signal attenuation and/or response times) compared to bare sensors. Drug release from coatings monitored over two weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture.

The tissue modifying effects of Dex-releasing porous coatings were accessed by fully implanting Tygon® tubing in the subcutaneous space of healthy and diabetic rats. Based on encouraging results from these studies, we deployed Dex-releasing porous coatings from the tips of functional sensors in both diabetic and healthy rats. We evaluated if the tissue modifying effects translated into accurate, maintainable and reliable sensor signals in the long-term. Sensor functionality was accessed by continuously monitoring glucose levels and performing acute glucose challenges at specified time points.

Sensors treated with porous Dex-releasing coatings showed diminished inflammation and enhanced vascularization of the tissue surrounding the implants in healthy rats. Functional sensors with Dex-releasing porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicated that Dex-loaded porous coatings were able to elicit a favorable tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo.

The diabetic pilot animal study showed differences in wound healing patters between healthy and diabetic subjects. Diabetic rats showed lower levels of inflammation and vascularization of the tissue surrounding implants when compared to their healthy counterparts. Also, functional sensors treated with Dex-releasing porous coatings did not show enhanced sensor sensitivity over a 21-day period. Moreover, increased in sensor signal lag and MARD scores were present in porous coated sensors regardless of Dex-loading when compared to bare implants. These results suggest that the altered wound healing patterns presented in diabetic tissues may lead to premature sensor failure when compared to sensors implanted in healthy rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Edoxaban, an oral direct factor Xa inhibitor, is in development for thromboprophylaxis, including prevention of stroke and systemic embolism in patients with atrial fibrillation (AF). P-glycoprotein (P-gp), an efflux transporter, modulates absorption and excretion of xenobiotics. Edoxaban is a P-gp substrate, and several cardiovascular (CV) drugs have the potential to inhibit P-gp and increase drug exposure. OBJECTIVE: To assess the potential pharmacokinetic interactions of edoxaban and 6 cardiovascular drugs used in the management of AF and known P-gp substrates/inhibitors. METHODS: Drug-drug interaction studies with edoxaban and CV drugs with known P-gp substrate/inhibitor potential were conducted in healthy subjects. In 4 crossover, 2-period, 2-treatment studies, subjects received edoxaban 60 mg alone and coadministered with quinidine 300 mg (n = 42), verapamil 240 mg (n = 34), atorvastatin 80 mg (n = 32), or dronedarone 400 mg (n = 34). Additionally, edoxaban 60 mg alone and coadministered with amiodarone 400 mg (n = 30) or digoxin 0.25 mg (n = 48) was evaluated in a single-sequence study and 2-cohort study, respectively. RESULTS: Edoxaban exposure measured as area under the curve increased for concomitant administration of edoxaban with quinidine (76.7 %), verapamil (52.7 %), amiodarone (39.8 %), and dronedarone (84.5 %), and exposure measured as 24-h concentrations for quinidine (11.8 %), verapamil (29.1 %), and dronedarone (157.6 %) also increased. Administration of edoxaban with amiodarone decreased the 24-h concentration for edoxaban by 25.7 %. Concomitant administration with digoxin or atorvastatin had minimal effects on edoxaban exposure. CONCLUSION: Coadministration of the P-gp inhibitors quinidine, verapamil, and dronedarone increased edoxaban exposure. Modest/minimal effects were observed for amiodarone, atorvastatin, and digoxin.