4 resultados para Coordination of protective relays

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouth, throat, and face contain numerous muscles that participate in a large variety of orofacial behaviors. The jaw and tongue can move independently, and thus require a high degree of coordination among the muscles that move them to prevent self-injury. However, different orofacial behaviors require distinct patterns of coordination between these muscles. The method through which motor control circuitry might coordinate this activity has yet to be determined. Electrophysiological, immunohistochemical, and retrograde tracing studies have attempted to identify populations of premotor neurons which directly send information to orofacial motoneurons in an effort to identify sources of coordination. Yet these studies have not provided a complete picture of the population of neurons which monosynaptically connect to jaw and tongue motoneurons. Additionally, while many of these studies have suggested that premotor neurons projecting to multiple motor pools may play a role in coordination of orofacial muscles, no clear functional roles for these neurons in the coordination of natural orofacial movements has been identified.

In this dissertation, I took advantage of the recently developed monosynaptic rabies virus to trace the premotor circuits for the jaw-closing masseter muscle and tongue-protruding genioglossus muscle in the neonatal mouse, uncovering novel premotor inputs in the brainstem. Furthermore, these studies identified a set of neurons which form boutons onto motor neurons in multiple motor pools, providing a premotor substrate for orofacial coordination. I then combined a retrogradely traveling lentivirus with a split-intein mediated split-Cre recombinase system to isolate and manipulate a population of neurons which project to both left and right jaw-closing motor nuclei. I found that these bilaterally projecting neurons also innervate multiple other orofacial motor nuclei, premotor regions, and midbrain regions implicated in motor control. I anatomically and physiologically characterized these neurons and used optogenetic and chemicogenetic approaches to assess their role in natural jaw-closing behavior, specifically with reference to bilateral masseter muscle electromyogram (EMG) activity. These studies identified a population of bilaterally projecting neurons in the supratrigeminal nucleus as essential for maintenance of an appropriate level of masseter activation during natural chewing behavior in the freely moving mouse. Moreover, these studies uncovered two distinct roles of supratrigeminal bilaterally projecting neurons in bilaterally synchronized activation of masseter muscles, and active balancing of bilateral masseter muscle tone against an excitatory input. Together, these studies identify neurons which project to multiple motor nuclei as a mechanism by which the brain coordinates orofacial muscles during natural behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. CONCLUSIONS/SIGNIFICANCE: Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.