3 resultados para Industrial engineering|Operations research

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM projects (Chapter 3). Returns from implemented ECM projects are used to fund additional ECM projects. In these cases, fluctuations in energy costs and uncertainty in the estimated savings severely influence ECM project selection and the amount of the appropriation requested. A risk aversion method proposed imposes a minimum on the number of “of projects completed in each stage. A comparative method using Conditional Value at Risk is analyzed. Time consistency was addressed in this chapter. This work demonstrates how a risk-based, stochastic, multi-stage model with binary decision variables at each stage provides a much more accurate estimate for planning than the agency’s traditional approach and deterministic models. Finally, in Chapter 4, a rolling-horizon model allows for subadditivity and superadditivity of the energy savings to simulate interactive effects between ECM projects. The approach makes use of inequalities (McCormick, 1976) to re-express constraints that involve the product of binary variables with an exact linearization (related to the convex hull of those constraints). This model additionally shows the benefits of learning between stages while remaining consistent with the single congressional appropriations framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A decision-maker, when faced with a limited and fixed budget to collect data in support of a multiple attribute selection decision, must decide how many samples to observe from each alternative and attribute. This allocation decision is of particular importance when the information gained leads to uncertain estimates of the attribute values as with sample data collected from observations such as measurements, experimental evaluations, or simulation runs. For example, when the U.S. Department of Homeland Security must decide upon a radiation detection system to acquire, a number of performance attributes are of interest and must be measured in order to characterize each of the considered systems. We identified and evaluated several approaches to incorporate the uncertainty in the attribute value estimates into a normative model for a multiple attribute selection decision. Assuming an additive multiple attribute value model, we demonstrated the idea of propagating the attribute value uncertainty and describing the decision values for each alternative as probability distributions. These distributions were used to select an alternative. With the goal of maximizing the probability of correct selection we developed and evaluated, under several different sets of assumptions, procedures to allocate the fixed experimental budget across the multiple attributes and alternatives. Through a series of simulation studies, we compared the performance of these allocation procedures to the simple, but common, allocation procedure that distributed the sample budget equally across the alternatives and attributes. We found the allocation procedures that were developed based on the inclusion of decision-maker knowledge, such as knowledge of the decision model, outperformed those that neglected such information. Beginning with general knowledge of the attribute values provided by Bayesian prior distributions, and updating this knowledge with each observed sample, the sequential allocation procedure performed particularly well. These observations demonstrate that managing projects focused on a selection decision so that the decision modeling and the experimental planning are done jointly, rather than in isolation, can improve the overall selection results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.