2 resultados para Enteric viruses

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.