3 resultados para Caos

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an analysis of hysteresis and dissipation in quasistatically driven disordered systems. The study is based on the random field Ising model with fluctuationless dynamics. It enables us to sort out the fraction of the energy input by the driving field stored in the system and the fraction dissipated in every step of the transformation. The dissipation is directly related to the occurrence of avalanches, and does not scale with the size of Barkhausen magnetization jumps. In addition, the change in magnetic field between avalanches provides a measure of the energy barriers between consecutive metastable states

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.