2 resultados para health state
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a re-emerging zoonotic disease. It has staged a comeback by establishing infections in wildlife and cattle, creating the potential for human disease in locations where it was thought to be under control. In northwestern Minnesota, infected cattle and white-tailed deer were first discovered in 2005. A major bovine tuberculosis eradication campaign is underway in the state, with multiple efforts employed to control M. bovis infection in both cattle and deer populations. In order to effectively eradicate bovine tuberculosis in Minnesota, there is a need for better understanding of the factors that increase the risk of deer and cattle interacting in a way that facilitates tuberculosis transmission. By reducing the risk of disease transmission within the animal populations, we will also reduce the risk that bovine tuberculosis will again become a common disease in human populations. The purpose of this study is to characterize the risk of interactions between cattle and white-tailed deer in northern Minnesota in order to prevent M. bovis transmission. A survey originally developed to assess deer-cattle interactions in Michigan was modified for use in Minnesota, introducing a scoring method to evaluate the areas of highest priority at risk of potential deer-cattle interaction. The resulting semi-quantitative deer-cattle interaction risk assessment was used at 53 cattle herds located in the region adjacent to the bovine tuberculosis “Core Area”. Two evaluators each scored the farm separately, and then created a management plan for the farm that prioritized the areas of greatest risk for deer-cattle interactions. Herds located within the “Management Zone” were evaluated by Minnesota Board of Animal Health staff, and results from these surveys were used as a point of comparison.
Resumo:
When an appropriate fish host is selected, analysis of its parasites offers a useful, reliable, economical, telescoped indication or monitor of environmental health. The value of that information increases when corroborated by another non-parasitological technique. The analysis of parasites is not necessarily simple because not all hosts serve as good models and because the number of species, presence of specific species, intensity of infections, life histories of species, location of species in hosts, and host response for each parasitic species have to be addressed individually to assure usefulness of the tool. Also, different anthropogenic contaminants act in a distinct manner relative to hosts, parasites, and each other as well as being influenced by natural environmental conditions. Total values for all parasitic species infecting a sample cannot necessarily be grouped together. For example, an abundance of numbers of either species or individuals can indicate either a healthy or an unhealthy environment, depending on the species of parasite. Moreover, depending on the parasitic species, its infection, and the time chosen for collection/examination, the assessment may indicate a chronic or acute state of the environmental health. For most types of analyses, the host should be one that has a restricted home range, can be infected by numerous species of parasites, many of which have a variety of additional hosts in their life cycles, and can be readily sampled. Data on parasitic infections in the western mosquitofish (Gambusia affinis), a fish that meets the criteria in two separate studies, illustrate the usefulness of that host as a model to indicate both healthy and detrimentally influenced environments. In those studies, species richness, intensity of select species, host resistance, other hosts involved in life cycles, and other factors all relate to site and contaminating discharge.