2 resultados para Pb Isotopes

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grassland ecosystems have been severely reduced and grassland bird populations have experienced consistent declines. National Park Service (NPS) properties on the Great Plains provide breeding habitat for grassland songbirds, though little is known about the quality of this habitat. A short-term study on songbirds at three NPS properties complemented current monitoring, providing an among park comparison addressing grassland bird productivity and fidelity relative to NPS property size. During 2008-2009, I assessed avian species richness, and estimated bird density and grassland songbird nest success. Bird species richness was greatest at small and medium sites, while number of nesting obligate species was greatest at the large site. Species-specific densities varied among sites, with few grassland obligates occurring at all three sites. Nest success estimates for grassland obligates were highest at the small site and lower at the large site. Another method to quantify habitat quality is assessment of breeding site fidelity. Current extrinsic markers used in monitoring site fidelity are inadequate for small birds; stable isotope analyses provide an alternative. I compared two techniques for assigning stable isotope tissue origin and measured grassland songbird site fidelity. My method of assigning origin provided site-specific variances of expected stable isotope values, an improvement over the most commonly used method. Fidelity tended to be higher at the large site, which may indicate a more robust breeding community of grassland birds. The small size of two of my sites precluded large sample sizes and made strong inferences difficult. To quantify how scientists cope with weak inference, I conducted a literature review. Strong inference was rarely observed, and most authors of weak-inference papers provided specific management recommendations. I suggest that adaptive management is an ideal method to resolve uncertainty from weak inference. Managers should consider my results within the context of regional and global management and the extent to which their unit might aide songbird conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.