2 resultados para BIOLOGICAL-MATERIALS

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first paper presented to you today by Dr. Spencer, an expert in the Animal Biology field and an official authority at the same time, you heard about the requirements imposed on a chemical in order to pass the different official hurdles before it ever will be accepted as a proven tool in wildlife management. Many characteristics have to be known and highly sophisticated tests have to be run. In many instances the governmental agency maintains its own screening, testing or analytical programs according to standard procedures. It would be impossible, however, for economic and time reasons to work out all the data necessary for themselves. They, therefore, depend largely on the information furnished by the individual industry which naturally has to be established as conscientiously as possible. This, among other things, Dr. Spencer has made very clear; and this is also what makes quite a few headaches for the individual industry, but I am certainly not speaking only for myself in saying that Industry fully realizes this important role in developing materials for vertebrate control and the responsibilities lying in this. This type of work - better to say cooperative work with the official institutions - is, however, only one part and for the most of it, the smallest part of work which Industry pays to the development of compounds for pest control. It actually refers only to those very few compounds which are known to be effective. But how to get to know about their properties in the first place? How does Industry make the selection from the many thousands of compounds synthesized each year? This, by far, creates the biggest problems, at least from the scientific and technical standpoint. Let us rest here for a short while and think about the possible ways of screening and selecting effective compounds. Basically there are two different ways. One is the empirical way of screening as big a number of compounds as possible under the supposition that with the number of incidences the chances for a "hit" increase, too. You can also call this type of approach the statistical or the analytical one, the mass screening of new, mostly unknown candidate materials. This type of testing can only be performed by a producer of many new materials,that means by big industries. It requires a tremendous investment in personnel, time and equipment and is based on highly simplified but indicative test methods, the results of which would have to be reliable and representative for practical purposes. The other extreme is the intellectual way of theorizing effective chemical configurations. Defenders of this method claim to now or later be able to predict biological effectiveness on the basis of the chemical structure or certain groups in it. Certain pre-experience should be necessary, that means knowledge of the importance of certain molecular requirements, then the detection of new and effective complete molecules is a matter of coordination to be performed by smart people or computers. You can also call this method the synthetical or coordinative method.