2 resultados para Gene-environment interactions

em Digital Commons @ DU | University of Denver Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study is to better understand the genetic basis of Reading Disability (RD) and Attention Deficit Hyperactivity Disorder (ADHD) by examining molecular G x E interactions with parental education for each disorder. Research indicates that despite sharing genetic risk factors, RD and ADHD are influenced by different types of G x E interactions with parental education - a diathesis stress interaction in the case of ADHD and a bioecological interaction in RD. In order to resolve this apparent paradox, we conducted a preliminary study using behavioral genetic methods to test for G x E interactions in RD and the inattentive subtype of ADHD (ADHD-I) in the same sample of monozygotic and dizygotic Colorado Learning Disabilities Research Center same-sex twin pairs (DeFries et al., 1997), and our findings were consistent with the literature. We posited a genetic hypothesis for this opposite pattern of interactions, which suggests that only genes specific to each disorder enter into these opposite interactions, not the shared genes underlying their comorbidity. This study sought to further investigate this paradox using molecular genetics methods. We examined multiple candidate genes identified for RD or related language phenotypes and those identified for ADHD for G x E interactions with parental education. The specific aims of this study were as follows: 1) partition known risk alleles for RD and/or related language phenotypes and ADHD-I into those which are pleiotropic and non-pleiotropic by testing each risk allele for association with both RD and ADHD-I, 2) explore the main effects of parental education on both RD and ADHD-I, 3) address G-E correlations, and 4) conduct exploratory G x E interaction analyses in order to test the genetic hypothesis. Analyses suggested a number of pleiotropic genes that influence both RD and ADHD; however, results did not remain after correcting for multiple comparisons. Although exploratory G x E interaction findings were not significant after multiple comparison correction, results suggested a G x E interaction in the bioecological direction with KIAA0319, parental education, and ADHD-I. Given the limited power in the current study, replication of these findings with larger samples is necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this research dissertation were to develop and present novel analytical methods for the quantification of surface binding interactions between aqueous nanoparticles and water-soluble organic solutes. Quantification of nanoparticle surface interactions are presented in this work as association constants where the solutes have interacted with the surface of the nanoparticles. By understanding these nanoparticle-solute interactions, in part through association constants, the scientific community will better understand how organic drugs and nanomaterials interact in the environment, as well as to understand their eventual environmental fate. The biological community, pharmaceutical, and consumer product industries also have vested interests in nanoparticle-drug interactions for nanoparticle toxicity research and in using nanomaterials as drug delivery vesicles. The presented novel analytical methods, applied to nanoparticle surface association chemistry, may prove to be useful in assisting the scientific community to understand the risks, benefits, and opportunities of nanoparticles. The development of the analytical methods presented uses a model nanoparticle, Laponite-RD (LRD). LRD was the proposed nanoparticle used to model the system and technique because of its size, 25 nm in diameter. The solutes selected to model for these studies were chosen because they are also environmentally important. Caffeine, oxytetracycline (OTC), and quinine were selected to use as models because of their environmental importance and chemical properties that can be exploited in the system. All of these chemicals are found in the environment; thus, how they interact with nanoparticles and are transported through the environment is important. The analytical methods developed utilize and a wide-bore hydrodynamic chromatography to induce a partial hydrodynamic separation between nanoparticles and dissolved solutes. Then, using deconvolution techniques, two separate elution profiles for the nanoparticle and organic solute can be obtained. Followed by a mass balance approach, association constants between LRD, our model nanoparticle, and organic solutes are calculated. These findings are the first of their kind for LRD and nanoclays in dilute dispersions.