3 resultados para extracellular matrix

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Erm, Er81, and Pea3 are the three members of the PEA3 group which belong to the Ets transcription factors family. These proteins regulate transcription of multiple target genes, such as those encoding several matrix metalloproteinases (MMP), which are enzymes degrading the extracellular matrix during cancer metastasis. In fact, PEA3-group genes are often overexpressed in different types of human cancers that also over-express these MMP and display a disseminating phenotype. In experimental models, regulation of PEA3 group member expression has been shown to influence the metastatic process, thus suggesting that these factors play a key role in metastasis. © John Libbey Eurotext.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The PEA3 group is composed of three highly conserved Ets transcription factors: Erm, Er81, and Pea3. These proteins regulate transcription of multiple genes, and their transactivating potential is affected by post-translational modifications. Among their target genes are several matrix metalloproteases (MMPs), which are enzymes degrading the extracellular matrix during normal remodelling events and cancer metastasis. In fact, PEA3-group genes are often over-expressed in different types of cancers that also over-express these MMPs and display a disseminating phenotype. Experimental regulation of the synthesis of PEA3 group members influences the metastatic process. This suggests that these factors play a key role in metastasis. © 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The PEA3 group members PEA3, ER81 and ERM, which are highly conserved transcription factors from the Ets family, are over-expressed in metastatic mammary tumors. In the current study, we present the characterization of a transgenic mouse strain which over-expresses ER81 in the mammary gland via the long terminal repeat of the mouse mammary tumor virus (LTR-MMTV). Although six genotypically positive transgenic lines were identified, only one expressed the ectopic transcript with an exclusive expression in the lactating and late-pregnancy (18th day) mammary glands. No mammary tumor or mammary deregulation appeared after 2 years of ectopic ER81 expression following lactation. We then sought to identify ER81 target genes, and the urokinase plasminogen activator (uPA) and the stromelysin-1, two enzymes involved in extracellular matrix degradation, were found to be transcriptionally upregulated in lactating mammary glands over-expressing ER81. Since these enzymes are involved in metastasis, this murine model could be further used to enhance mammary cancer metastatic process by crossing these animals with mice carrying non-metastatic mammary tumors. We thus created a transgenic mouse model permitting the over-expression of a functionally active Ets transcription factor in the mammary gland without perturbing its development.