5 resultados para allo-HSCT, GvL, GvHD, cDNA-expression cloning, allo-reactive T cells

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) catalyze the oxidative conversion of Δ5-3β-hydroxysteroids to the Δ4-3-keto configuration and is therefore essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens. Using human 3β-HSD cDNA as probe, a human 3β-HSD gene was isolated from a λ-EMBL3 library of leucocyte genomic DNA. A fragment of 3β-HSD genomic DNA was also obtained by amplification of genomic DNA using the polymerase chain reaction. The 3β-HSD gene contains a 5′-untranslated exon of 53 base pairs (bp) and three successive translated exons of 232, 165, and 1218 bp, respectively, separated by introns of 129, 3883, and 2162 bp. The transcription start site is situated 267 nucleotides upstream from the ATG initiating codon. DNA sequence analysis of the 5′-flanking region reveals the existence of a putative TATA box (ATAAA) situated 28 nucleotides upstream from the transcription start site while a putative CAAT binding sequence is located 57 nucleotides upstream from the TATA box. Expression of a cDNA insert containing the coding region of 3β-HSD in nonsteroidogenic cells shows that the gene encodes a single 42-kDa protein containing both 3β-hydroxysteroid dehydrogenase and Δ5-Δ4-isomerase activities. Moreover, all natural steroid substrates tested are transformed with comparable efficiency by the enzyme. In addition to its importance for studies of the regulation of expression of 3β-HSD in gonadal as well as peripheral tissues, knowledge of the structure of the human 3β-HSD gene should permit investigation of the molecular defects responsible for 3β-HSD deficiency, the second most common cause of adrenal hyperplasia in children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin (IL)-10, a potent anti-inflammatory cytokine, limits the severity of acute pancreatitis and downregulates transforming growth factor (TGF)-beta release by inflammatory cells on stimulation. Proinflammatory mediators, reactive oxygen species, and TGF-beta can activate pancreatic stellate cells and their synthesis of collagen I and III. This study evaluates the role of endogenous IL-10 in the modulation of the regeneration phase following acute pancreatitis and in the development of pancreatic fibrosis. IL-10 knockout (KO) mice and their C57BL/6 controls were submitted to repeated courses (3/wk, during 6 wk, followed by 1 wk of recovery) of cerulein-induced acute pancreatitis. TGF-beta(1) release was measured on plasma, and its pancreatic expression was assessed by quantitative RT-PCR and immunohistochemistry. Intrapancreatic IL-10 gene expression was assessed by semiquantitative RT-PCR, and intrapancreatic collagen content was assessed by picrosirius staining. Activated stellate cells were detected by immunohistochemistry. S phase intrapancreatic cells were marked using tritiated thymidine labeling. After repeated acute pancreatitis, IL-10 KO mice had more severe histological lesions and fibrosis (intrapancreatic collagen content) than controls. TGF-beta(1) plasma levels, intrapancreatic transcription, and expression by ductal and interstitial cells, as well as the number of activated stellate cells, were significantly higher. IL-10 KO mice disclosed significantly fewer acinar cells in S phase, whereas the opposite was observed for pseudotubular cells. Endogenous IL-10 controls the regeneration phase and limits the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2F6 is widely expressed in human tissues and cell lines. Recent studies have demonstrated its involvement in developmental patterning and in the regulation of various genes implicated in chromatin remodelling. Despite a growing number of studies, nothing is really known concerning the E2F6 expression regulation. To understand how cells control E2F6 expression, we analysed the activity of the previously cloned promoter region of the human E2F6 gene. DNase I footprinting, gel electrophoretic-mobility shift, transient transfection and site-directed mutagenesis experiments allowed the identification of two functional NRF-1/α-PAL (nuclear respiratory factor-1/α-palindrome-binding protein)-binding sites within the human E2F6 core promoter region, which are conserved in the mouse and rat E2F6 promoter region. Moreover, ChIP (chromatin immunoprecipitation) analysis demonstrated that overexpressed NRF-1/α-PAL is associated in vivo with the E2F6 promoter. Furthermore, overexpression of full-length NRF-1/α-PAL enhanced E2F6 promoter activity, whereas expression of its dominant-negative form reduced the promoter activity. Our results indicate that NRF-1/α-PAL is implicated in the regulation of basal E2F6 gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E1AF protein belongs to the family of Ets transcription factors and is involved in the regulation of metastasis gene expression. It has recently been reported in an undifferentiated child sarcoma that part of this gene could be fused by translocation to the ews gene. We show here that the human e1af gene, which is located in the q21 region of chromosome 17, is organized in 13 exons distributed along 19 kb of genomic DNA. Its two main functional domains, the acidic domain and the DNA-binding ETS domain, are each encoded by three different exons. The 3'-untranslated region of e1af is 0.7 kb. The 5'-untranslated region is about 0.3 kb and is composed of a first exon upstream from the exon containing the first methionine. These data could possibly accelerate an understanding of the molecular basis of putative inherited diseases linked to E1AF. (C) 1999 Elsevier Science B.V. All rights reserved.