2 resultados para lung small cell cancer

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung transplantation is a necessary step for the patients with the end-stage of chronic obstructive pulmonary disease. The use of artificial lungs is a promising alternative to natural lung transplantation which is complicated and is restricted by low organ donations. For successful lung engineering, it is important to choose the correct combination of specific biological cells and a synthetic carrier polymer. The focus of this study was to investigate the interactions of human lung epithelial cell line NCl-H292 that is involved in lung tissue development with the biodegradable poly(ϵ-caprolactone) before and after its chemical modification to evaluate potential for use in artificial lung formation. Also, the effect of polymer chemical modification on its mechanical and surface properties has been investigated. The poly(ϵ-caprolactone) surface was modified using aminolysis followed by immobilization of gelatine. The unmodified and modified polymer surfaces were characterized for roughness, tensile strength, and NCl-H292 metabolic cell activity. The results showed for the first time the possibility for NCI-H292 cells to adhere on this polymeric material. The Resazurin assay showed that the metabolic activity at 24 hours post seeding of 80% in the presence of the unmodified and greater than 100% in the presence of the modified polymer was observed. The roughness of the poly(ϵ-caprolactone) increased from 4 nm to 26 nm and the film strength increased from 0.01 kN to 0.045 kN when the material was chemically modified. The results obtained to date show potential for using modified poly(ϵ-caprolactone) as a scaffold for lung tissue engineering.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND: The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1α subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. METHODS: Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1α is known to be active under hypoxic conditions. HIF-1α status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. RESULTS: Intracellular HIF-1α was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1α in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. CONCLUSIONS: These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression.