4 resultados para gene sequence

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine sponges have been an abundant source of new metabolites in recent years. The symbiotic association between the bacteria and the sponge has enabled scientists to access the bacterial diversity present within the bacterial/sponge ecosystem. This study has focussed on accessing the bacterial diversity in two Irish coastal marine sponges, namely Amphilectus fucorum and Eurypon major. A novel species from the genus Aquimarina has been isolated from the sponge Amphilectus fucorum. The study has also resulted in the identification of an α–Proteobacteria, Pseudovibrio sp. as a potential producer of antibiotics. Thus a targeted based approach to specifically cultivate Pseudovibrio sp. may prove useful for the development of new metabolites from this particular genus. Bacterial isolates from the marine sponge Haliclona simulans were screened for anti–fungal activity and one isolate namely Streptomyces sp. SM8 displayed activity against all five fungal strains tested. The strain was also tested for anti–bacterial activity and it showed activity against both against B. subtilis and P. aeruginosa. Hence a combinatorial approach involving both biochemical and genomic approaches were employed in an attempt to identify the bioactive compounds with these activities which were being produced by this strain. Culture broths from Streptomyces sp. SM8 were extracted and purified by various techniques such as reverse–phase HPLC, MPLC and ash chromatography. Anti–bacterial activity was observed in a fraction which contained a hydroxylated saturated fatty acid and also another compound with a m/z 227 but further structural elucidation of these compounds proved unsuccessful. The anti–fungal fractions from SM8 were shown to contain antimycin–like compounds, with some of these compounds having different retention times from that of an antimycin standard. A high–throughput assay was developed to screen for novel calcineurin inhibitors using yeast as a model system and three putative bacterial extracts were found to be positive using this screen. One of these extracts from SM8 was subsequently analysed using NMR and the calcineurin inhibition activity was con rmed to belong to a butenolide type compound. A H. simulans metagenomic library was also screened using the novel calcineurin inhibitor high–throughput assay system and eight clones displaying putative calcineurin inhibitory activity were detected. The clone which displayed the best inhibitory activity was subsequently sequenced and following the use of other genetic based approaches it became clear that the inhibition was being caused by a hypothetical protein with similarity to a hypothetical Na+/Ca2+ exchanger protein. The Streptomyces sp. SM8 genome was sequenced from a fragment library using Roche 454 pyrosequencing technology to identify potential secondary metabolism clusters. The draft genome was annotated by IMG/ER using the Prodigal pipeline. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMPN00000000. The genome contains genes which appear to encode for several polyketide synthases (PKS), non–ribosomal peptide synthetases (NRPS), terpene and siderophore biosynthesis and ribosomal peptides. Transcriptional analyses led to the identification of three hybrid clusters of which one is predicted to be involved in the synthesis of antimycin, while the functions of the others are as yet unknown. Two NRPS clusters were also identified, of which one may be involved in gramicidin biosynthesis and the function of the other is unknown. A Streptomyces sp. SM8 NRPS antC gene knockout was constructed and extracts from the strain were shown to possess a mild anti–fungal activity when compared to the SM8 wild–type. Subsequent LCMS analysis of antC mutant extracts confirmed the absence of the antimycin in the extract proving that the observed anti–fungal activity may involve metabolite(s) other than antimycin. Anti–bacterial activity in the antC gene knockout strain against P. aeruginosa was reduced when compared to the SM8 wild–type indicating that antimycin may be contributing to the observed anti–bacterial activity in addition to the metabolite(s) already identified during the chemical analyses. This is the first report of antimycins exhibiting anti–bacterial activity against P. aeruginosa. One of the hybrid clusters potentially involved in secondary metabolism in SM8 that displayed high and consistent levels of gene–expression in RNA studies was analysed in an attempt to identify the metabolite being produced by the pathway. A number of unusual features were observed following bioinformatics analysis of the gene sequence of the cluster, including a formylation domain within the NRPS cluster which may add a formyl group to the growing chain. Another unusual feature is the lack of AT domains on two of the PKS modules. Other unusual features observed in this cluster is the lack of a KR domain in module 3 of the cluster and an aminotransferase domain in module 4 for which no clear role has been hypothesised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restless Legs Syndrome (RLS) is a common neurological disorder affecting nearly 15% of the general population. Ironically, RLS can be described as the most common condition one has never heard of. It is usually characterised by uncomfortable, unpleasant sensations in the lower limbs inducing an uncontrollable desire to move the legs. RLS exhibits a circadian pattern with symptoms present predominantly in the evening or at night, thus leading to sleep disruption and daytime somnolence. RLS is generally classified into primary (idiopathic) and secondary (symptomatic) forms. Primary RLS includes sporadic and familial cases of which the age of onset is usually less than 45 years and progresses slowly with a female to male ratio of 2:1. Secondary forms often occur as a complication of another health condition, such as iron deficiency or thyroid dysfunction. The age of onset is usually over 45 years, with an equal male to female ratio and more rapid progression. Ekbom described the familial component of the disorder in 1945 and since then many studies have been published on the familial forms of the disorder. Molecular genetic studies have so far identified ten loci (5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p). No specific gene within these loci has been identified thus far. Association mapping has highlighted a further five areas of interest. RLS6 has been found to be associated with SNPs in the BTBD9 gene. Four other variants were found within intronic and intergenic regions of MEIS1, MAP2K5/LBXCOR1, PTPRD and NOS1. The pathophysiology of RLS is complex and remains to be fully elucidated. Conditions associated with secondary RLS, such as pregnancy or end-stage renal disease, are characterised by iron deficiency, which suggests that disturbed iron homeostasis plays a role. Dopaminergic dysfunction in subcortical systems also appears to play a central role. An ongoing study within the Department of Pathology (University College Cork) is investigating the genetic characteristics of RLS in Irish families. A three generation RLS pedigree RLS3002 consisting of 11 affected and 7 unaffected living family members was recruited. The family had been examined for four of the known loci (5q, 12q, 14p and 9p) (Abdulrahim 2008). The aim of this study was to continue examining this Irish RLS pedigree for possible linkage to the previously described loci and associated regions. Using informative microsatellite markers linkage was excluded to the loci on 5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p and also within the regions reported to be associated with RLS. This suggested the presence of a new unidentified locus. A genome-wide scan was performed using two microsatellite marker screening sets (Research Genetics Inc. Mapping set and the Applied Biosystems Linkage mapping set version 2.5). Linkage analysis was conducted under an autosomal dominant model with a penetrance of 95% and an allele frequency of 0.01. A maximum LOD score of 3.59 at θ=0.00 for marker D19S878 indicated significant linkage on chromosome 19p. Haplotype analysis defined a genetic region of 6.57 cM on chromosome 19p13.3, corresponding to 2.5 Mb. There are approximately 100 genes annotated within the critical region. Sequencing of two candidate genes, KLF16 and GAMT, selected on the assumed pathophysiology of RLS, did not identify any sequence variant. This study provides evidence of a novel RLS locus in an Irish pedigree, thus supporting the picture of RLS as a genetically heterogeneous trait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystinosis is a multi-system autosomal recessive disorder caused by mutations and/or deletions in both alleles of CTNS, a gene encoding for the low pH dependent lysosomal cystine exporter cystinosin. Cystinosis occurs in approximately 1:200,000 newborns worldwide and is characterised by an accumulation of cystine in the lysosomes. The most severe form of the disorder is nephropathic cystinosis presenting Fanconi syndrome and leads without treatment to an end-stage renal failure before the age of ten. The only treatment available so far is cysteamine therapy, which delays disease progression by five years, but does not provide a cure for cystinosis patients. Current gene and cell based therapeutic approaches have not yet provided a suitable alternative. A potentially approach for a long-term treatment could be to generate autologous gene–modified stem cells by repairing the gene. Zinc Finger Nucleases (ZFNs) serve as a tool to increase HDR up to a 200,000-fold by introducing a double-stranded break (DSB). Thus, simple mutations in the CTNS gene could be corrected by introduction of a double-stranded break using ZFNs to boost the process of HDR with a suitable donor DNA sequence. A permanent repair of the most common lesion CTNS, a 57 kb deletion, could be achieved by ZFN-mediated HDR using a minigene CTNS promoter/cDNA construct. The thesis describes the design and testing of seven zinc finger nuclease pairs for their cleavage activity in vitro and in cellulo.. A highly sensitive assay to detect even low levels of ZFN-mediated HDR was also developed. Finally, to further investigate the role of autophagy in tissue injury in cystinotic cells an assay to monitor autophagy levels in the cells was successfully developed. This assay provides the opportunity to demonstrate functional restoration of CTNS after successful ZFN-HDR in cystinotic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is an autosomal recessive monogenic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene with the ΔF508 mutation accounting for approximately 70% of all CF cases worldwide. This thesis investigates whether existing zinc finger nucleases designed in this lab and CRISPR/gRNAs designed in this thesis can mediate efficient homology-directed repair (HDR) with appropriate donor repair plasmids to correct CF-causing mutations in a CF cell line. Firstly, the most common mutation, ΔF508, was corrected using a pair of existing ZFNs, which cleave in intron 9, and the donor repair plasmid pITR-donor-XC, which contains the correct CTT sequence and two unique restriction sites. HDR was initially determined to be <1% but further analysis by next generation sequencing (NGS) revealed HDR occurred at a level of 2%. This relatively low level of repair was determined to be a consequence of distance from the cut site to the mutation and so rather than designing a new pair of ZFNs, the position of the existing intron 9 ZFNs was exploited and attempts made to correct >80% of CF-causing mutations. The ZFN cut site was used as the site for HDR of a mini-gene construct comprising exons 10-24 from CFTR cDNA (with appropriate splice acceptor and poly A sites) to allow production of full length corrected CFTR mRNA. Finally, the ability to cleave closer to the mutation and mediate repair of CFTR using the latest gene editing tool CRISPR/Cas9 was explored. Two CRISPR gRNAs were tested; CRISPR ex10 was shown to cleave at an efficiency of 15% and CRISPR in9 cleaved at 3%. Both CRISPR gRNAs mediated HDR with appropriate donor plasmids at a rate of ~1% as determined by NGS. This is the first evidence of CRISPR induced HDR in CF cell lines.