3 resultados para gene interaction

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gut-hormone, ghrelin, activates the centrally expressed growth hormone secretagogue 1a (GHS-R1a) receptor, or ghrelin receptor. The ghrelin receptor is a G-protein coupled receptor (GPCR) expressed in several brain regions, including the arcuate nucleus (Arc), lateral hypothalamus (LH), ventral tegmental area (VTA), nucleus accumbens (NAcc) and amygdala. Activation of the GHS-R1a mediates a multitude of biological activities, including release of growth hormone and food intake. The ghrelin signalling system also plays a key role in the hedonic aspects of food intake and activates the dopaminergic mesolimbic circuit involved in reward signalling. Recently, ghrelin has been shown to be involved in mediating a stress response and to mediate stress-induced food reward behaviour via its interaction with the HPA-axis at the level of the anterior pituitary. Here, we focus on the role of the GHS-R1a receptor in reward behaviour, including the motivation to eat, its anxiogenic effects, and its role in impulsive behaviour. We investigate the functional selectivity and pharmacology of GHS-R1a receptor ligands as well as crosstalk of the GHS-R1a receptor with the serotonin 2C (5-HT2C) receptor, which represent another major target in the regulation of eating behaviour, stress-sensitivity and impulse control disorders. We demonstrate, to our knowledge for the first time, the direct impact of GHS-R1a signalling on impulsive responding in a 2-choice serial reaction time task (2CSRTT) and show a role for the 5-HT2C receptor in modulating amphetamine-associated impulsive action. Finally, we investigate differential gene expression patterns in the mesocorticolimbic pathway, specifically in the NAcc and PFC, between innate low- and high-impulsive rats. Together, these findings are poised to have important implications in the development of novel treatment strategies to combat eating disorders, including obesity and binge eating disorders as well as impulse control disorders, including, substance abuse and addiction, attention deficit hyperactivity disorder (ADHD) and mood disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal pathogen Candida albicans causes serious nosocomial infections in patients, in part, due to formation of drug-resistant biofilms. Protein kinases (PK) and transcription factors (TF) mediate signal transduction and transcription of proteins involved in biofilm development. To discover biofilm-related PKs, a collection of 63 C. albicans PK mutants was screened twice independently with microtiter plate-based biofilm assay (XTT). Thirty-eight (60%) mutants showed different degrees of biofilm impairment with the poor biofilm formers additionally possessing filamentation defects. Most of these genes were already known to encode proteins associated with Candida morphology and biofilms but VPS15, PKH3, PGA43, IME2 and CEX1, were firstly associated with both processes in this study. Previous studies of Holcombe et al. (2010) had shown that bacterial pathogen, Pseudomonas aeruginosa can impair C. albicans filamentation and biofilm development. To investigate their interaction, the good biofilm former PK mutants of C. albicans were assessed for their response to P. aeruginosa supernatants derived from two strains, wildtype PAO1 and homoserine lactone (HSL)-free mutant ΔQS, without finding any nonresponsive mutants. This suggested that none of the PKs in this study was implicated in Candida-Pseudomonas signaling. To screen promoter sequences for overrepresented TFs across C. albicans gene sets significantly up/downregulated in presence of bacterial supernatants from Holcombe et al. (2010) study, TFbsST database was created online. The TFbsST database integrates experimentally verified TFs of Candida to analyse promoter sequences for TF binding sites. In silico studies predicted that Efg1p was overrepresented in C. albicans and C. parapsilosis RBT family genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.