11 resultados para Streptococcus salivarius

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite increased application of commensal bacteria for attempting to improve the symptoms of a variety of inflammatory conditions, including inflammatory bowel diseases, diarrhoea and irritable bowel syndrome, therapeutic approaches that involve live bacteria are hampered by a limited understanding of bacterium-host interactions. Lactobacilli are natural inhabitants of the mammalian gastrointestinal tract and many lactobacilli are regarded as probiotics meaning that they exert a beneficial influence on the health status of their consumers. Modulation of immune responses is a plausible mechanism underlying these beneficial effects. The aim of this thesis was to investigate the effect of 33 Lactobacillus salivarius strains on the production of inflammatory cytokines from a variety of human and mouse immune cells. Induction of immune responses in vitro was shown to be bacterial- and mouse strain-dependent, cell type-dependent, blood donor-dependent and bacterial cell number-dependent. Collectively, these data suggest the importance of a case-by-case selection of candidate strains for their potential therapeutic application. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs) and play a critical role in shaping microbial-specific innate and adaptive immune responses. Following ligand engagement, TLRs trigger a complex network of signalling that culminate in the production of inflammatory mediators. The investigation of the molecular mechanisms underlying the Lb. salivarius-host interaction resulted in the identification of a novel role for TLR2 in negatively regulating TLR4 signalling originated from subcellular compartments within macrophages. Notably, sustained activation of JAK/STAT cascade and M1-signature genes in TLR2-/- macrophages was ablated by selective TLR4 and JAK inhibitors and by absence of TLR4 in TLR2/4-/- cells. In addition, other negative regulators of TLR signalling triggered by Lb. salivarius strains were found to be the adapter molecules TIRAP and TRIF. Understanding negative regulation of TLR signalling may pave the way for the development of novel therapeutics to limit inflammation in multiple diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactobacillus salivarius is unusual among the lactobacilli due to its multireplicon genome architecture. The circular megaplasmids harboured by L. salivarius strains encode strain-specific traits for intestinal survival and probiotic activity. L. salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. In terms of probiotic strain selection, it is important to have an understanding of the level of genomic diversity present in this species. Comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) were employed to assess the level of genomic diversity in L. salivarius. The wellcharacterised probiotic strains L. salivarius UCC118 was employed as a genetic reference strain. The group of test strains were chosen to reflect the range of habitats from which L. salivarius strains are frequently recovered, including human, animal, and environmental sources. Strains of L. salivarius were found to be genetically diverse when compared to the UCC118 genome. The most conserved strains were human GIT isolates, while the greatest level of divergence were identified in animal associated isolates. MLST produced a better separation of the test strains according to their isolation origins, than that produced by CGHbased strain clustering. The exopolysaccharide (EPS) associated genes of L. salivarius strains were found to be highly divergent. The EPS-producing phenotype was found to be carbonsource dependent and inversely related to a strain's ability to produce a biofilm. The genome of the porcine isolate L. salivarius JCM1046 was shown by sequencing to harbour four extrachromosomal replicons, a circular megaplasmid (pMP1046A), a putative chromid (pMP1046B), a linear megaplasmid (pLMP1046) and a smaller circular plasmid (pCTN1046) which contains an integrated Tn916-like element (Tn6224), which carries the tetracycline resistance gene tetM. pLMP1046 represents the first sequence of a linear plasmid in a Lactobacillus species. Dissemination of antibiotic resistance genes among species with food or probiotic-association is undesirable, and the identification of Tn6224-like elements in this species has implications for strain selection for probiotic applications. In summary, this thesis used a comparative genomics approach to examine the level of genotypic diversity in L. salivarius, a species which contains probiotic strains. The genome sequence of strain JCM1046 provides additional insight into the spectrum of extrachromosomal replicons present in this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cheddar cheese was made using control culture (Lactococcus lactis subsp. lactis), or with control culture plus a galactose-metabolising (Gal+) or galactose-non-metabolising (Gal-) Streptococcus thermophilus adjunct; for each culture type, the pH at whey drainage was either low (pH 6.15) or high (pH 6.45). Sc. thermophilus affected the levels of residual lactose and galactose, and the volatile compound profile and sensory properties of the mature cheese (270 d) to an extent dependent on the drain pH and phenotype (Gal+ or Gal-). For all culture systems, reducing drain pH resulted in lower levels of moisture and lactic acid, a higher concentration of free amino acids, and higher firmness. The results indicate that Sc. thermophilus may be used to diversify the sensory properties of Cheddar cheese, for example from a fruity buttery odour and creamy flavour to a more acid taste, rancid odour, and a sweaty cheese flavour at high drain pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumer interest in health-promoting food products is a major driving force for the increasing global demand of functional (probiotic) dairy foods. Yogurt is considered the ideal medium for delivery of beneficial functional ingredients. Gamma-amino-butyric acid has potential as a bioactive ingredient in functional foods due to its health-promoting properties as an anti-stress, anti-hypertensive, and anti-diabetic agent. Here, we report the use of a novel Streptococcus thermophilus strain, isolated from the digestive tract of fish, for production of yogurt naturally enriched with 2 mg/ml of gamma-amino-butyric acid (200 mg in a standard yogurt volume of 100 ml), a dose in the same range as that provided by some commercially available gamma-amino-butyric acid supplements. The biotechnological suitability of this strain for industrial production of yogurt was demonstrated by comparison with the reference yogurt inoculated with the commercial CH1 starter (Chr. Hansen) widely used in the dairy industry. Both yogurts showed comparable pH curves [ΔpH/Δt = 0.31-0.33 h-1], viscosity [0.49 Pa-s], water holding capacity [72–73%], and chemical composition [moisture (87–88%), protein (5.05–5.65%), fat (0.12–0.15%), sugar (4.8–5.8%), and ash (0.74–1.2%)]. Gamma-amino-butyric acid was not detected in the control yogurt. In conclusion, the S. thermophilus APC151 strain reported here provides a natural means for fortification of yogurt with gamma-amino-butyric acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrochemical plastics/polymers are a common feature of day to day living as they occur in packaging, furniture, mobile phones, computers, construction equipment etc. However, these materials are produced from non-renewable materials and are resistant to microbial degradation in the environment. Considerable research has therefore been carried out into the production of sustainable, biodegradable polymers, amenable to microbial catabolism to CO2 and H2O. A key group of microbial polyesters, widely considered as optimal replacement polymers, are the Polyhydroxyalkaonates (PHAs). Primary research in this area has focused on using recombinant pure cultures to optimise PHA yields, however, despite considerable success, the high costs of pure culture fermentation have thus far hindered the commercial viability of PHAs thus produced. In more recent years work has begun to focus on mixed cultures for the optimisation of PHA production, with waste incorporations offering optimal production cost reductions. The scale of dairy processing in Ireland, and the high organic load wastewaters generated, represent an excellent potential substrate for bioconversion to PHAs in a mixed culture system. The current study sought to investigate the potential for such bioconversion in a laboratory scale biological system and to establish key operational and microbial characteristics of same. Two sequencing batch reactors were set up and operated along the lines of an enhanced biological phosphate removal (EBPR) system, which has PHA accumulation as a key step within repeated rounds of anaerobic/aerobic cycling. Influents to the reactors varied only in the carbon sources provided. Reactor 1 received artificial wastewater with acetate alone, which is known to be readily converted to PHA in the anaerobic step of EBPR. Reactor 2 wastewater influent contained acetate and skim milk to imitate a dairy processing effluent. Chemical monitoring of nutrient remediation within the reactors as continuously applied and EBPR consistent performances observed. Qualitative analysis of the sludge was carried out using fluorescence microscopy with Nile Blue A lipophillic stain and PHA production was confirmed in both reactors. Quantitative analysis via HPLC detection of crotonic acid derivatives revealed the fluorescence to be short chain length Polyhydroxybutyrate, with biomass dry weight accumulations of 11% and 13% being observed in reactors 1 and 2, respectively. Gas Chromatography-Mass Spectrometry for medium chain length methyl ester derivatives revealed the presence of hydroxyoctanoic, -decanoic and -dodecanoic acids in reactor 1. Similar analyses in reactor 2 revealed monomers of 3-hydroxydodecenoic and 3-hydroxytetradecanoic acids. Investigation of the microbial ecology of both reactors as conducted in an attempt to identify key species potentially contributing to reactor performance. Culture dependent investigations indicated that quite different communities were present in both reactors. Reactor 1 isolates demonstrated the following species distributions Pseudomonas (82%), Delftia acidovorans (3%), Acinetobacter sp. (5%) Aminobacter sp., (3%) Bacillus sp. (3%), Thauera sp., (3%) and Cytophaga sp. (3%). Relative species distributions among reactor 2 profiled isolates were more evenly distributed between Pseudoxanthomonas (32%), Thauera sp (24%), Acinetobacter (24%), Citrobacter sp (8%), Lactococcus lactis (5%), Lysinibacillus (5%) and Elizabethkingia (2%). In both reactors Gammaproteobacteria dominated the cultured isolates. Culture independent 16S rRNA gene analyses revealed differing profiles for both reactors. Reactor 1 clone distribution was as follows; Zooglea resiniphila (83%), Zooglea oryzae (2%), Pedobacter composti (5%), Neissericeae sp. (2%) Rhodobacter sp. (2%), Runella defluvii (3%) and Streptococcus sp. (3%). RFLP based species distribution among the reactor 2 clones was as follows; Runella defluvii (50%), Zoogloea oryzae (20%), Flavobacterium sp. (9%), Simplicispira sp. (6%), Uncultured Sphingobacteria sp. (6%), Arcicella (6%) and Leadbetterella bysophila (3%). Betaproteobacteria dominated the 16S rRNA gene clones identified in both reactors. FISH analysis with Nile Blue dual staining resolved these divergent findings, identifying the Betaproteobacteria as dominant PHA accumulators within the reactor sludges, although species/strain specific allocations could not be made. GC analysis of the sludge had indicated the presence of both medium chain length as well short chain length PHAs accumulating in both reactors. In addition the cultured isolates from the reactors had been identified previously as mcl and scl PHA producers, respectively. Characterisations of the PHA monomer profiles of the individual isolates were therefore performed to screen for potential novel scl-mcl PHAs. Nitrogen limitation driven PHA accumulation in E2 minimal media revealed a greater propensity among isoates for mcl-pHA production. HPLC analysis indicated that PHB production was not a major feature of the reactor isolates and this was supported by the low presence of scl phaC1 genes among PCR screened isolates. A high percentage distribution of phaC2 mcl-PHA synthase genes was recorded, with the majority sharing high percentage homology with class II synthases from Pseudomonas sp. The common presence of a phaC2 homologue was not reflected in the production of a common polymer. Considerable variation was noted in both the monomer composition and ratios following GC analysis. While co-polymer production could not be demonstrated, potentially novel synthase substrate specificities were noted which could be exploited further in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catabolic flexibility affords a bacterium the ability to utilise different sugar sources as carbon for energy. This is important for commensal lactobacilli like Lactobacillus ruminis which can be exposed to a variety of carbohydrates in vivo. However, little is known about the fermentation capabilities, metabolic pathways, genetic diversity or potential survival mechanisms used by L. ruminis in vivo. A combination of in vitro and in silico techniques was used to identify the catabolic pathways of L. ruminis. I also compared 16 L. ruminis strains using a panel of biochemical and survival assays, genetically, whole genome sequencing and RNA sequencing. Multi locus sequence typing revealed that strains clustered according to their host sources. Transcriptome analysis by RNAseq of two motile strains under three growth conditions, including swarming, identified the up-regulation of carbohydrate-related genes under swarming conditions. This suggests that carbohydrate flexibility may have an uncharacterised role in L. ruminis swarming. Following on from the assessment of L. ruminis catabolic flexibility, the porcine diet was supplemented with galactooligosaccharides or L. ruminis ATCC 25644 plus galactooligosaccharides. Supplementation of the porcine diet with galactooligosaccharide had no effect on microbiota diversity. In contrast, the L. ruminis plus galactooligosaccharide treatment significantly reduced the microbiota diversity. Diet is a major factor that affects the diversity of the gut microbiota. In order to get a more thorough understanding of diet and gut health in animals such as racehorses and domesticated herbivores, I determined the core microbiota of animals consuming different feeds. Interestingly, the gut microbiota diversity correlated with the host phylogeny of the animal. The genome of Lactobacillus equi (2.19 Mb), isolated from a healthy Irish thoroughbred was also sequenced and annotated, and comprised 2,263 predicted genes. The large repertoire of predicted carbohydrate-related genes may offer L. equi an advantage in the complex and harsh hindgut environment. In summary, this thesis uses functional genomics to assess the effect that carbohydrates have on commensal lactobacilli and the microbiota as a whole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall objective of this thesis was to gain further insight into the mechanisms underlying commensal microbial influences on intestinal ion transport. In this regard, I examined the impact of commensal host-microbe interactions on colonic secretomotor function in mouse. I first examined the influence of two different probiotic (microorganisms which, when given in adequate amounts, can confer health benefits upon the host) strains, Bifidobacterium infantis 35624 and L. salivarius UCC118 on active colonic ion transport in the mouse, using the Ussing Chamber. I found that both probiotics appear to have converging effects on ion transport at a functional level. However, L. salivarius UCC118 may preferentially inhibit neurally-evoked ion transport. Next I examined the impact of the host microbiota itself on both baseline and stimulated colonic secretomotor function as well as probiotic induced changes in ion transport. I provide further evidence that the microbiota is capable of mediating alterations in colonic ion transport, and specifically suggests that it can influence cAMP-mediated responses. Finally, it has been well documented that many probiotics elicit their effects via secreted bioactives, therefore, I studied the effects of microbially produced GABA, contained in supernatants from the commensal microbe Lactobacillus brevis DPC6108, on colonic secretomotor function. In conclusion, I believe that commensal microbes have an important and strain specific functional influence on colonic ion transport and secretomotor function and these effects can be mediated via extracellular bioactives. Moreover, I believe that functional ex-vivo studies such as those carried out in this thesis have a critical role to play in our future understanding of host-microbe interactions in the gut.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statins are a class of drug that inhibits cholesterol biosynthesis, and are used to treat patients with high serum cholesterol levels. They exert this function by competitively binding to the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA reductase (HMGR), which catalyses the formation of mevalonate, a rate-limiting step in cholesterol biosynthesis. In addition, statins have what are called “pleiotropic effects”, which include the reduction of inflammation, immunomodulation, and antimicrobial effects. Statins can also improve survival of patients with sepsis and pneumonia. Cystic fibrosis (CF) is the most common recessive inherited disease in the Caucasian population, which is characterised by factors including, but not limited to, excessive lung inflammation and increased susceptibility to infection. Therefore, the overall objective of this study was to examine the effects of statins on CFassociated bacterial pathogens and the host response. In this work, the prevalence of HMGR was examined in respiratory pathogens, and several CF-associated pathogens were found to possess homologues of this enzyme. HMGR homology was analysed in Staphylococcus aureus, Burkholderia cenocepacia and Streptococcus pneumoniae, and the HMGR of B. cenocepacia was found to have significant conservation to that of Pseudomonas mevalonii, which is the most widely-characterised bacterial HMGR. However, in silico analysis revealed that, unlike S. aureus and S. pneumoniae, B. cenocepacia did not possess homologues of other mevalonate pathway proteins, and that the HMGR of B. cenocepacia appeared to be involved in an alternative metabolic pathway. The effect of simvastatin was subsequently tested on the growth and virulence of S. aureus, B. cenocepacia and S. pneumoniae. Simvastatin inhibited the growth of all 3 species in a dose-dependent manner. In addition, statin treatment also attenuated biofilm formation of all 3 species, and reduced in vitro motility of S. aureus. Interestingly, simvastatin also increased the potency of the aminoglycoside antibiotic gentamicin against B. cenocepacia. The impact of statins was subsequently tested on the predominant CF-associated pathogen Pseudomonas aeruginosa, which does not possess a HMGR homologue. Mevastatin, lovastatin and simvastatin did not influence the growth of this species. However, sub-inhibitory statin concentrations reduced the swarming motility and biofilm formation of P. aeruginosa. The influence of statins was also examined on Type 3 toxin secretion, quorum sensing and chemotaxis, and no statin effect was observed on any of these phenotypes. Statins did not appear to have a characteristic effect on the P. aeruginosa transcriptome. However, a mutant library screen revealed that the effect of statins on P. aeruginosa biofilm was mediated through the PvrR regulator and the Cup fimbrial biosynthesis genes. Furthermore, proteomic analysis demonstrated that 6 proteins were reproducibly induced by simvastatin in the P. aeruginosa swarming cells. The effect of statins on the regulation of the host-P. aeruginosa immune response was also investigated. Statin treatment increased expression of the pro-inflammatory cytokines IL-8 and CCL20 in lung epithelial cells, but did not attenuate P. aeruginosa-mediated inflammatory gene induction. In fact, simvastatin and P. aeruginosa caused a synergistic effect on CCL20 expression. The expression of the transcriptional regulators KLF2 and KLF6 was also increased by statins and P. aeruginosa, with the induction of KLF6 by simvastatin proving to be a novel effect. Interestingly, both statins and P. aeruginosa were capable of inducing alternative splicing of KLF6. P. aeruginosa was found to induce KLF6 alternative splicing by way of the type 3 secreted toxin ExoS. In addition, a mechanistic role was elucidated for KLF6 in the lung, as it was determined that statin-mediated induction of this protein was responsible for the induction of the host response genes CCL20 and iNOS. Moreover, statin treatment caused a slight increase in infection-related cytotoxicity, and increased bacterial adhesion to cells. Taken together, these data demonstrate that statins can reduce the virulence of CFassociated bacterial pathogens and alter host response effectors. Furthermore, novel statin effectors were identified in both bacterial and host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacteriocin class of antimicrobial peptides have emerged as a viable alternative to at least partially fill the void created by the end of the golden age of antibiotic discovery. Along with this potential use in a clinical setting, bacteriocins also play an important role as bio-preservatives in the food industry. This thesis focuses on a specific bacteriocin group, the lantibiotics (Lanthionine-containing antibiotics). Their numerous methods of appliance in a food setting and how their gene-encoded nature can be modified to improve on overall bioactivity and functionality are explored here. The use of a lantibiotic (lacticin 3147) producing starter culture to control the Crohn’s disease-linked pathogen Mycobacterium paratuberculosis was assessed in a raw milk cheese. Although lacticin 3147 production did not effectively control the pathogen, the study provided an impetus to employ a variety of PCR-based mutagenesis techniques with a view to the creation of enhanced lantibiotic derivatives. Through the use of these techniques, a number of enhanced derivatives were generated from the ‘hinge’ region of the nisin peptide. Furthermore, a derivative in which the three hinge amino acids were replaced with three alanines represents the first enhanced derivative of nisin to have been designed through a rational process. This derivative also formed the backbone for the creation of an active, trypsin resistant, variant. Through the employment of further mutagenesis methods a derivative was created with potential use as an oral anti-bacterial in the future. Finally a number of lead nisin derivatives were investigated to assess their anti- Streptococcus agalactiae ability, a mastitis associated pathogen. Also a system was developed to facilitate the large scale production of these candidates, or other nisin derivatives, from dairy substrates.