7 resultados para Precursor eritróide

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurogenesis occurs in two distinct regions of the adult brain; the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the subventricular zone (SVZ) lining the lateral ventricles. It is now well-known that adult hippocampal neurogenesis can be modulated by a number of intrinsic and extrinsic factors e.g. local signalling molecules, exercise, environmental enrichment and learning. Moreover, levels of adult hippocampal neurogenesis decrease with age, at least in rodents, and alterations in hippocampal neurogenesis have been reported in animal models and human studies of neuropsychiatric and neurodegenerative conditions. Neuroinflammation is a common pathological feature of these conditions and is also a potent modulator of adult hippocampal neurogenesis. Recently, the orphan nuclear receptor TLX has been identified as an important regulator of adult hippocampal neurogenesis as its expression is necessary to maintain the neural precursor cell (NPC) pool in the adult DG. Likewise, exposure of animals to voluntary exercise has been consistently demonstrated to promote adult hippocampal neurogenesis. Lentivirus (LV)- mediated gene transfer is a useful tool to elucidate gene function and to explore potential therapeutic candidates across an array of conditions as it facilitates sustained gene expression in both dividing and post-mitotic cell populations. Both intrinsic and extrinsic factors are important regulators of adult hippocampal neurogenesis. Examining how these factors are affected by an inflammatory stimulus, and the subsequent effects on adult hippocampal neurogenesis provides important information for the development of novel treatment strategies for neuropsychiatric and neurodegenerative conditions in which adult hippocampal neurogenesis is impaired. The aims of the series of experiments presented in this thesis were to examine the effect of the pro-inflammatory cytokine interleukin-1β (IL-1β) on adult hippocampal NPCs both in vitro and in vivo. In vitro, we have shown that IL-1β reduces proliferation of adult hippocampal NPCs in a dose and time-dependent manner. In addition, we have demonstrated that TLX expression is reduced by IL-1β. Blockade of IL-1β signalling prevented both the IL-1β-induced reduction in cell proliferation and TLX expression. In vivo, we examined the effect of short term and long term exposure to LV-IL-1β in sedentary mice and in mice exposed to voluntary running. We demonstrated that impaired hippocampal neurogenesis is only evident after long term exposure to IL-1β. In mice exposed to voluntary running, hippocampal neurogenesis is significantly increased following short-term but not long-term exposure to running. Moreover, short-term running effectively prevents any IL-1β-induced effects on hippocampal neurogenesis; however, no such effects are seen following long-term exposure to running.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes modelling, synthesis, spectroscopic and physical characterisation, as well as application of Magnesium, Calcium and Copper β-diketonate, β-ketoiminate, β-diiminate, Schiff base, amide and fluorenyl compounds. The selected compounds could potentially find application in materials deposition using Atomic Layer Deposition (ALD), MOCVD, CVD and Sol-Gel techniques. Quantum chemical modelling was used as a tool to perform the comprehensive and rapid study of magnesium and calcium precursor molecules in order to predict which of them would be more successful in ALD of metal oxides. Precursor chemistry plays a key role in ALD, since precursors must be volatile, thermally stable, chemisorb on the surface and react rapidly with existing surface groups. This Thesis describes one aspect of this, surface reactivity between ligands and hydroxyl groups, via a gas-phase model with energetics computed at the level of Density Functional Theory (DFT). A number of different synthetic strategies, both aerobic and anaerobic, were investigated for the synthesis of the described metal complexes. These included the use of different metal starting reagents such as, anhydrous and hydrated inorganic metal salts, metal alkyls and Grignard reagents. Some of previously unreported metal complexes of homoleptic and heteroleptic magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, amides and Schiff base type were synthesised and characterised: [Mg(hfpd)2(DipPa)], [Mg(hfpd)2(MapH)2], [Mg(hf-ebp)(THF)2], [Mg(tf-Pap)Cl(THF)2], [Ca(PhNacnac)2], [Cu(tf-Pap)2], [Cu(PhNacnac)2], [Cu(hf-ebp)], [Cu(DipPa)] and [Cu(DipPa)2(4,4’-bypy)]. A comprehensive study on the thermal properties of magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, Schiff base, amide and fluorenyl complexes was performed using TGA and sublimation of selected compounds. Atomic Layer Deposition of MgO using magnesium β-ketoiminate – [bis{(4-N-phenyl)-2-pentonato} magnesium] and β-diketonate - [bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)(THF)magnesium hydrate] was performed on Si(100) substrates at 180°C and 0.2 Torr using O2 plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper dimethylamino-2-propoxide [Cu(dmap)2] is used as a precursor for low-temperature atomic layer deposition (ALD) of copper thin films. Chemisorption of the precursor is the necessary first step of ALD, but it is not known in this case whether there is selectivity for adsorption sites, defects, or islands on the substrate. Therefore, we study the adsorption of the Cu(dmap)2 molecule on the different sites on flat and rough Cu surfaces using PBE, PBE-D3, optB88-vdW, and vdW-DF2 methods. We found the relative order of adsorption energies for Cu(dmap)2 on Cu surfaces is Eads (PBE-D3) > Eads (optB88-vdW) > Eads (vdW-DF2) > Eads (PBE). The PBE and vdW-DF2 methods predict one chemisorption structure, while optB88-vdW predicts three chemisorption structures for Cu(dmap)2 adsorption among four possible adsorption configurations, whereas PBE-D3 predicts a chemisorbed structure for all the adsorption sites on Cu(111). All the methods with and without van der Waals corrections yield a chemisorbed molecule on the Cu(332) step and Cu(643) kink because of less steric hindrance on the vicinal surfaces. Strong distortion of the molecule and significant elongation of Cu–N bonds are predicted in the chemisorbed structures, indicating that the ligand–Cu bonds break during the ALD of Cu from Cu(dmap)2. The molecule loses its initial square-planar structure and gains linear O–Cu–O bonding as these atoms attach to the surface. As a result, the ligands become unstable and the precursor becomes more reactive to the coreagent. Charge redistribution mainly occurs between the adsorbate O–Cu–O bond and the surface. Bader charge analysis shows that electrons are donated from the surface to the molecule in the chemisorbed structures, so that the Cu center in the molecule is partially reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using quantum chemical calculations, we investigate surface reactions of copper precursors and diethylzinc as the reducing agent for effective Atomic Layer Deposition (ALD) of Cu. The adsorption of various commonly used Cu(II) precursors is explored. The precursors vary in the electronegativity and conjugation of the ligands and flexibility of the whole molecule. Our study shows that the overall stereochemistry of the precursor governs the adsorption onto its surface. Formation of different Cu(II)/Cu(I)/Cu(0) intermediate complexes from the respective Cu(II) compounds on the surface is also explored. The surface model is a (111) facet of a Cu55 cluster. Cu(I) compounds are found to cover the surface after the precursor pulse, irrespective of the precursor chosen. We provide new information about the surface chemistry of Cu(II) versus Cu(I) compounds. A pair of CuEt intermediates or the dimer Cu2Et2 reacts in order to deposit a new Cu atom and release gaseous butane. In this reaction, two electrons from the Et anions are donated to copper for reduction to metallic form. This indicates that a ligand exchange between the Cu and Zn is important for the success of this transmetalation reaction. The effect of the ligands in the precursor on the electron density before and after adsorption onto the surface has also been computed through population analysis. In the Cu(I) intermediate, charge is delocalized between the Cu precursor and the bare copper surface, indicating metallic bonding as the precursor densifies to the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) of highly conformal, silicon-based dielectric thin films has become necessary because of the continuing decrease in feature size in microelectronic devices. The ALD of oxides and nitrides is usually thought to be mechanistically similar, but plasma-enhanced ALD of silicon nitride is found to be problematic, while that of silicon oxide is straightforward. To find why, the ALD of silicon nitride and silicon oxide dielectric films was studied by applying ab initio methods to theoretical models for proposed surface reaction mechanisms. The thermodynamic energies for the elimination of functional groups from different silicon precursors reacting with simple model molecules were calculated using density functional theory (DFT), explaining the lower reactivity of precursors toward the deposition of silicon nitride relative to silicon oxide seen in experiments, but not explaining the trends between precursors. Using more realistic cluster models of amine and hydroxyl covered surfaces, the structures and energies were calculated of reaction pathways for chemisorption of different silicon precursors via functional group elimination, with more success. DFT calculations identified the initial physisorption step as crucial toward deposition and this step was thus used to predict the ALD reactivity of a range of amino-silane precursors, yielding good agreement with experiment. The retention of hydrogen within silicon nitride films but not in silicon oxide observed in FTIR spectra was accounted for by the theoretical calculations and helped verify the application of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer's disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.