3 resultados para Peripheral nervous system

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lnx1 (Ligand of Numb protein X 1) and Lnx2 genes belong to a family of PDZ domain-containing RING finger domain E3 ubiquitin ligases. mRNA expression for both genes have been reported in early murine central nervous system. However, there have been limited reports with regards to the expression patterns for both the proteins in vivo. Hence, we have attempted to characterize the significance of these proteins in the context of morphology and physiology of the central nervous system. Through our studies, we have attempted to examine closely the expression of these two genes in the murine central nervous system. We have also looked at novel interacting ligands for both proteins. Interacting partners have been examined with particular relevance to possible roles of their interactions with LNX1 and LNX2 in the functioning of the nervous system. Moreover, we have performed loss-of-function studies by way of creation and characterization of knockout mice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Perfusion experiments on an isolated, canine lateral saphenous vein segment preparation have shown that noradrenaline causes potent, flow dependent effects, at a threshold concentration comparable to that of plasma noradrenaline, when it stimulates the segment by diffusion from its microcirculation (vasa vasorum). The effects caused are opposite to those neuronal noradrenaline causes in vivo and that, in the light of the principle that all information is transmitted in patterns that need contrast to be detected – star patterns need darkness, sound patterns, quietness – has generated the hypothesis that plasma noradrenaline provides the obligatory contrast tissues need to detect and respond to the regulatory information encrypted in the diffusion pattern of neuronal noradrenaline. Based on the implications of that hypothesis, the controlled variable of the peripheral noradrenergic system is believed to be the maintenance of a set point balance between the contrasting effects of plasma and neuronal noradrenaline on a tissue. The hypothalamic sympathetic centres are believed to monitor that balance through the level of afferent sympathetic traffic they receive from a tissue and to correct any deviation it detects in the balance by adjusting the level of efferent sympathetic input it projects to the tissue. The failure of the centres to maintain the correct balance, for reasons intrinsic or extrinsic to themselves, is believed to be responsible for degenerative and genetic disorders. When the failure causes the balance to be polarised in favour of the effect of plasma noradrenaline that is believed to cause inflammatory diseases like dilator cardiac failure, renal hypertension, varicose veins and aneurysms; when it causes it to be polarised in favour of the effect of neuronal noradrenaline that is believed to cause genetic diseases like hypertrophic cardiopathy, pulmonary hypertension and stenoses and when, in pregnancy, a factor causes the polarity to favour plasma noradrenaline in all the maternal tissues except the uterus and conceptus, where it favours neuronal noradrenaline, that is believed to cause preeclampsia.