7 resultados para NEURONAL SURVIVAL

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterised by motor and non-motor symptoms, resulting from the degeneration of nigrostriatal dopaminergic neurons and peripheral autonomic neurons. Given the limited success of neurotrophic factors in clinical trials, there is a need to identify new small molecule drugs and drug targets to develop novel therapeutic strategies to protect all neurons that degenerate in PD. Epigenetic dysregulation has been implicated in neurodegenerative disorders, while targeting histone acetylation is a promising therapeutic avenue for PD. We and others have demonstrated that histone deacetylase inhibitors have neurotrophic effects in experimental models of PD. Activators of histone acetyltransferases (HAT) provide an alternative approach for the selective activation of gene expression, however little is known about the potential of HAT activators as drug therapies for PD. To explore this potential, the present study investigated the neurotrophic effects of CTPB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide), which is a potent small molecule activator of the histone acetyltransferase p300/CBP, in the SH-SY5Y neuronal cell line. We report that CTPB promoted the survival and neurite growth of the SH-SY5Y cells, and also protected these cells from cell death induced by the neurotoxin 6-hydroxydopamine. This study is the first to investigate the phenotypic effects of the HAT activator CTPB, and to demonstrate that p300/CBP HAT activation has neurotrophic effects in a cellular model of PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfusion experiments on an isolated, canine lateral saphenous vein segment preparation have shown that noradrenaline causes potent, flow dependent effects, at a threshold concentration comparable to that of plasma noradrenaline, when it stimulates the segment by diffusion from its microcirculation (vasa vasorum). The effects caused are opposite to those neuronal noradrenaline causes in vivo and that, in the light of the principle that all information is transmitted in patterns that need contrast to be detected – star patterns need darkness, sound patterns, quietness – has generated the hypothesis that plasma noradrenaline provides the obligatory contrast tissues need to detect and respond to the regulatory information encrypted in the diffusion pattern of neuronal noradrenaline. Based on the implications of that hypothesis, the controlled variable of the peripheral noradrenergic system is believed to be the maintenance of a set point balance between the contrasting effects of plasma and neuronal noradrenaline on a tissue. The hypothalamic sympathetic centres are believed to monitor that balance through the level of afferent sympathetic traffic they receive from a tissue and to correct any deviation it detects in the balance by adjusting the level of efferent sympathetic input it projects to the tissue. The failure of the centres to maintain the correct balance, for reasons intrinsic or extrinsic to themselves, is believed to be responsible for degenerative and genetic disorders. When the failure causes the balance to be polarised in favour of the effect of plasma noradrenaline that is believed to cause inflammatory diseases like dilator cardiac failure, renal hypertension, varicose veins and aneurysms; when it causes it to be polarised in favour of the effect of neuronal noradrenaline that is believed to cause genetic diseases like hypertrophic cardiopathy, pulmonary hypertension and stenoses and when, in pregnancy, a factor causes the polarity to favour plasma noradrenaline in all the maternal tissues except the uterus and conceptus, where it favours neuronal noradrenaline, that is believed to cause preeclampsia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We conducted a survival analysis of all the confirmed cases of Adult Tuberculosis (TB) patients treated in Cork-City, Ireland. The aim of this study was to estimate Survival time (ST), including median time of survival and to assess the association and impact of covariates (TB risk factors) to event status and ST. The outcome of the survival analysis is reported in this paper. Methods: We used a retrospective cohort study research design to review data of 647 bacteriologically confirmed TB patients from the medical record of two teaching hospitals. Mean age 49 years (Range 18–112). We collected information on potential risk factors of all confirmed cases of TB treated between 2008–2012. For the survival analysis, the outcome of interest was ‘treatment failure’ or ‘death’ (whichever came first). A univariate descriptive statistics analysis was conducted using a non- parametric procedure, Kaplan -Meier (KM) method to estimate overall survival (OS), while the Cox proportional hazard model was used for the multivariate analysis to determine possible association of predictor variables and to obtain adjusted hazard ratio. P value was set at <0.05, log likelihood ratio test at >0.10. Data were analysed using SPSS version 15.0. Results: There was no significant difference in the survival curves of male and female patients. (Log rank statistic = 0.194, df = 1, p = 0.66) and among different age group (Log rank statistic = 1.337, df = 3, p = 0.72). The mean overall survival (OS) was 209 days (95%CI: 92–346) while the median was 51 days (95% CI: 35.7–66). The mean ST for women was 385 days (95%CI: 76.6–694) and for men was 69 days (95%CI: 48.8–88.5). Multivariate Cox regression showed that patient who had history of drug misuse had 2.2 times hazard than those who do not have drug misuse. Smokers and alcohol drinkers had hazard of 1.8 while patients born in country of high endemicity (BICHE) had hazard of 6.3 and HIV co-infection hazard was 1.2. Conclusion: There was no significant difference in survival curves of male and female and among age group. Women had a higher ST compared to men. But men had a higher hazard rate compared to women. Anti-TNF, immunosuppressive medication and diabetes were found to be associated with longer ST, while alcohol, smoking, RICHE, BICHE was associated with shorter ST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malnutrition, sarcopenia and cancer cachexia (CC) are prevalent among cancer patients and can have detrimental effects on clinical outcomes such as quality of life (QoL) and overall survival. Cachexia is associated with lower tolerance for chemotherapy, which limits the total dose that can be delivered, the number of symptomatic responses and any survival advantage that might be accrued. Moreover, for the majority who do not respond, cachexia may be exacerbated by systemic chemotherapy, thus increasing the net symptom burden experienced by patients. The multitude of interactions between cancer location, treatments, nutritional status and QoL has never been thoroughly explored in an Irish cancer cohort. The objectives of this thesis were to further understand nutritional status, especially body composition in ambulatory cancer patients and determine the relationship between nutritional status using different assessment criteria and QoL, chemotherapy toxicity and survival among cancer patients undergoing chemotherapy. Results aimed to identify baseline factors that may be predictive of poor outcome, toxicities to chemotherapy and disease-free and overall survival. This thesis broadly divides into two sections. The first section (Chapters 3 & 4) focuses on improving our knowledge of the nutritional status of Irish cancer outpatients using a cross sectional study design. A study of 517 patients referred for chemotherapy was conducted using computed tomography (CT) imaging (body composition) and a survey that documented oncologic data, weight loss (WL) data and QoL data. We revealed that a significant proportion of Irish cancer patients undergoing chemotherapy experience unintentional WL over the previous 6 months (62%), sarcopenia (45%) and CC (43%), and the distribution of WL and nutritional risk were associated with site of primary tumour and treatment intent. Patients that had sarcopenia, nutritional risk, or CC had significantly reduced functional abilities, more symptoms and adverse global QoL. In the second section of this thesis (Chapters 5 & 6) the potential link between developing toxicity to antineoplastic regimens in patients with sarcopenia was conducted by way of retrospective studies. A retrospective serial CT analysis defined the prevalence of sarcopenia in patients with metastatic renal cell carcinoma (mRCC) and metastatic castrate resistant prostate cancer (mCRPC), which was then correlated with dose limiting toxicities of sunitinib and docetaxel respectively. Sarcopenia was prevalent in patients with mRCC and mCRPC, was an occult condition in patients with normal/high BMI, was associated with less treatment days, was a significant predictor of DLT in patients receiving sunitinib and a significant predictor of neutropenia and neurosensory toxicities in patients receiving docetaxel. This thesis attempted to address the underlying research deficiencies in Irish oncology nutritional data at national level. The findings from this thesis have implications for the planning of cancer care interventions and indicate that further research is required to improve nutritional screening, in particular for CC and sarcopenia, in the hope that timely intervention can improve both patient-centered and oncologic outcomes.