5 resultados para Brain-derived neurotrophic factor

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that promote the survival of midbrain dopaminergic neurons in vitro and in vivo. Both factors have potent neurotrophic and neuroprotective effects in rat models of Parkinson's disease (PD), and may represent promising new therapies for PD. The aim of the present study was to investigate the endogenous expression and function of GDF5 and GDNF in the nigrostriatal dopaminergic system during development and in rat models of PD. Examination of the temporal expression patterns of endogenous GDF5, GDNF, and their respective receptors, in the developing and adult nigrostriatal dopaminergic system suggest that these factors play important roles in promoting the survival and maturation of midbrain dopaminergic neurons during the period of postnatal programmed cell death. The relative levels of GDF5 and GDNF mRNAs in the midbrain and striatum, and their individual temporal expression patterns during development, suggest that their modes of actions are quite distinct in vivo. Furthermore, the sustained expression of GDF5, GDNF, and their receptors into adulthood suggest roles for these factors in the continued support and maintenance of mature nigrostriatal dopaminergic neurons. The present study found that endogenous GDF5, GDNF, and their receptors are differentially expressed in two 6-hydroxydopamine-induced lesion adult rat models of PD. In both terminal and axonal lesion models of PD, GDF5 mRNA levels in the striatum increased at 10 days post-lesion, while GDNF mRNA levels in the nigrostriatal system decreased at 10 and 28 days post-lesion. Thus, despite the fact that exogenous GDF5 and GDNF have similar effects on midbrain dopaminergic neurons in vitro and in vivo, their endogenous responses to a neurotoxic injury are quite distinct. These results highlight the importance of studying the temporal dynamic changes in neurotrophic factor expression during development and in animal models of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ventral midbrain (VM) dopaminergic (DA) neurons, which project to the dorsal striatum via the nigrostriatal pathway, are progressively degenerated in Parkinson’s disease (PD). The identification of the instructive factors that regulate midbrain DA neuron development, and the subsequent elucidation of the molecular bases of their effects, is vital. Such an understanding would facilitate the generation of transplantable DA neurons from stem cells and the identification of developmentally-relevant neurotrophic factors, the two most promising therapeutic approaches for PD. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth/differentiation factor (GDF) 5, which signal via a canonical Smad 1/5/8 signalling pathway, have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo, and may function to regulate VM DA neuronal development. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. The present thesis hypothesised that canonical Smad signalling mediates the direct effects of BMP2 and GDF5 on the development of VM DA neurons. By activating, modulating and/or inhibiting various components of the BMP-Smad signalling pathway, this research demonstrated that GDF5- and BMP2-induced neurite outgrowth from midbrain DA neurons is dependent on BMP type I receptor activation of the Smad signalling pathway. The role of glial cell-line derived neurotrophic factor (GDNF)-signalling, dynamin-dependent endocytosis and Smad interacting protein-1 (Sip1) regulation, in the neurotrophic effects of BMP2 and GDF5 were determined. Finally, the in vitro development of VM neural stem cells (NSCs) was characterised, and the ability of GDF5 and BMP2 to induce these VM NSCs towards DA neuronal differentiation was investigated. Taken together, these experiments identify GDF5 and BMP2 as novel regulators of midbrain DA neuronal induction and differentiation, and demonstrate that their effects on DA neurons are mediated by canonical BMPR-Smad signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular and cellular basis of stress pathology remains an important research question in biological science. A better understanding of this may enable the development of novel approaches for the treatment of stress-related disorders. There is a considerable body of scientific evidence suggesting that dietary lipids, phospholipids and omega-3 polyunsaturated fatty acids (n-3 PUFAs), have therapeutic potential for certain psychiatric disorders. Thus, we proposed n-3 PUFAs as a novel strategy for the prevention or amelioration of stress-related disorders. We hypothesised that these compounds would improve behavioural and neurobiological responses and alter gut microbial composition. Furthermore, we proposed a new mechanism of action exerted by n-3 PUFAs using an in vitro model of stress. Lastly, we explored the protective effects of both phospholipids and n-3 PUFAs against neuroinflammation, which has been shown to contribute to the development of stress-related disorders. We provide further evidence that glucocorticoids, inflammation and early-life stress induce vulnerability to psychopathologies. Specifically, we have demonstrated that corticosterone (CORT) alters cortical neuron and astrocyte percentage composition, reduces brain-derived-neuronal factor (BDNF) expression, and induces glucocorticoid receptor (GR) down-regulation in mixed cortical cultures. Interestingly, we found that lipopolysaccharide (LPS) treatment resulted in an over-expression of pro-inflammatory cytokines in cortical astrocyte cultures. Moreover, we demonstrate that early-life stress induces changes to the monoaminergic and immune systems as well as altered neuroendocrine response to stressors later in life. In addition, we found that early-life stress alters the gut microbiota in adulthood. These data demonstrate that n-3 PUFAs can attenuate CORT-induced cellular changes, but not those caused by LPS, within the cerebral cortex. Similarly, phospholipids were unable to reverse LPS-induced inflammation in cultured astrocytes. In addition, this thesis proposes that n-3 PUFAs may prevent the development or lessen the symptoms of mental illnesses, ameliorating anxiety- and depressive-like symptoms as well as cognitive effects, particularly when administered during neurodevelopment. Such effects may be mediated by GR activation as well as by modification of the gut microbiota composition. Taken together, our findings suggest that n-3 PUFAs have therapeutic potential for stress-related disorders and we provide evidence for the mechanisms by which they may exert these effects. These findings contribute to an exciting and growing body of research suggesting that nutritional interventions may have an important role to play in the treatment of stress-related psychiatric conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth differentiation factor-5 (GDF-5) is a member of the transforming growth factor-β superfamily, a family of proteins that play diverse roles in many aspects of cell growth, proliferation and differentiation. GDF-5 has also been shown to be a trophic factor for embryonic midbrain dopaminergic neurons in vitro (Krieglstein et al. 1995) and after transplantation to adult rats in vivo (Sullivan et al. 1998). GDF-5 has also been shown to have neuroprotective and neurorestorative effects on adult dopaminergic neurons in the substantia nigra in animal models of Parkinson’s disease (Sullivan et al. 1997, 1999; Hurley et al. 2004). This experimental evidence has lead to GDF-5 being proposed as a neurotrophic factor with potential for use in the treatment of Parkinson’s disease. However, it is not know if GDF-5 is expressed in the brain and whether it plays a role in dopaminergic neuron development. The experiments presented here aim to address these questions. To that end this thesis is divided into five separate studies each addressing a particular question associated with GDF-5 and its expression patterns and roles during the development of the rat midbrain. Expression of the GDF-5 in the developing rat ventral mesencephalon (VM) was found to begin at E12 and peak on E14, the day that dopaminergic neurons undergo terminal differentiation. In the adult rat, GDF-5 was found to be restricted to heart and brain, being expressed in many areas of the brain, including striatum and midbrain. This indicated a role for GDF-5 in the development and maintenance of dopaminergic neurons. The appropriate receptors for GDF-5 (BMPR-II and BMPR-Ib) were found to be expressed at high levels in the rat VM at E14 and BMPR-II expression was demonstrated on dopaminergic neurons in the E13 mouse VM. GDF-5 resulted in a three-fold increase in the numbers of dopaminergic neurons in cultures of E14 rat VM, without affecting the numbers of neurones or total cells. GDF-5 was found to increase the proportion of neurons that were dopaminergic. The numbers of Nurr1-positive cells were not affected by GDF-5 treatment, but GDF-5 did increase the numbers of Nurr1- positive cells that expressed tyrosine hydroxylase (TH). Taken together this data indicated that GDF-5 increases the conversion of Nurr1-positive, TH-negative cells to Nurr1-positive, TH-positive cells. In GDF-5 treated cultures, total neurite length, neurite arborisation and somal area of dopaminergic were all significantly increased compared to control cultures. Thus this study showed that GDF-5 increased the numbers and morphological differentiation of VM dopaminergic neurones in vitro. In order to examine if GDF-5 could induce a dopaminergic phenotype in neural progenitor cells, neurosphere cultures prepared from embryonic rat VM were established. The effect of the gestational age of the donor VM on the proportion of cell types generated from neurospheres from E12, E13 and E14 VM was examined. Dopaminergic neurons could only be generated from neurospheres which were prepared from E12 VM. Thus in subsequent studies the effect of GDF-5 on dopaminergic induction was examined in progentior cell cultures prepared from the E12 rat VM. In primary cultures of E12 rat VM, GDF-5 increased the numbers of TH-positive cells without affecting the proliferation or survival of these cells. In cultures of expanded neural progenitor cells from the E12 rat VM, GDF-5 increased the expression of Nurr1 and TH, an action that was dependent on signalling through the BMPR-Ib receptor. Taken together, these experiments provide evidence that GDF-5 is expressed in the developing rat VM, is involved in both the induction of a dopaminergic phenotype in cells of the VM and in the subsequent morphological development of these dopaminergic neurons

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.