2 resultados para Autistic disorder

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic Kidney Disease (CKD), osteoporosis and mild hyponatremia are all prevalent chronic conditions that may coexist and are often under-recognized. Mineral-Bone Disorder begins early in the natural history of CKD and results in complex abnormalities of bone which ultimately confers a well-established increased risk of fragility fractures in End Stage Kidney Disease. Hyponatremia is a novel, usually renal mediated metabolic perturbation, that most commonly occurs independently of the stage of renal dysfunction but which may also predispose to increased fracture risk. The extent -if any- to which either early stages of renal dysfunction or the presence of hyponatremia contribute to fracture occurrence in the general population, independently of osteoporosis, is unclear. Renal transplantation is the treatment of choice for ESKD and although it restores endogenous renal function it typically fails to normalize either the long term cardiovascular or fracture risk. One potential mechanism contributing to these elevated long-term risks and to diminished Health Related Quality of Life is persistent, post-transplant hyperparathyroidism. In this study we retrospectively examine the association of renal function and serum sodium with Bone Mineral Density and fracture occurrence in a retrospective cohort of 1930 female members of the general population who underwent routine DXA scan. We then prospectively recruited a cohort of 90 renal transplant recipients in order to examine the association of post transplant parathyroid hormone (PTH) level with measures of CKD Mineral Bone Disorder, including, DXA Bone Mineral Density, Vascular Calcification (assessed using both abdominal radiography and CT techniques, as well as indirectly by carotid-femoral Pulse Wave Velocity) and Quality of Life (using the Short Form-12 and a PTH specific symptom score). In the retrospective DXA cohort, moderate CKD (eGFR 30-59ml/min/1.73m2) and hyponatremia (<135mmol/L) were associated with fracture occurrence, independently of BMD, with an adjusted Odds Ratio (95% Confidence Interval), of 1.37 (1.0, 1.89) and 2.25 (1.24, 4.09) respectively. In the renal transplant study, PTH was independently associated with the presence of osteoporosis, adjusted Odds Ratio (95% Confidence Interval), 1.15 (per 10ng/ml increment), (1.04, 1.26). The presence of osteoporosis but not PTH was independently associated with measures of vascular calcification, adjusted ß (95% Confidence Interval), 12.45, (1.16, 23.75). Of the eight quality-of-life domains examined, post-transplant PTH (per 10ng/ml increment), was only significantly and independently associated with reduced Physical Functioning, (95% Confidence Interval), 1.12 (1.01, 1.23). CKD and hyponatremia are both common health problems that may contribute to fracture occurrence in the general population, a major on-going public health concern. PTH and decreased Bone Mineral Density may signal sub-optimal long-term outcomes post renal transplantation, influencing bone and vascular health and to a limited extent long term Health Related Quality of Life

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sprouty proteins are key regulators of cell growth and branching morphogenesis during development. Human SPRY3 which maps to the pseudoautosomal region 2, undergoes random X-inactivation in females and preferential Y-inactivation in males, behaving as though genetically X-linked. Spry3 is widely expressed in neuronal tissues, being found at high levels in the cerebellum and particularly in the Purkinje cells which, notably, are deficient in the autistic brain. Spry3 is also highly expressed in other ganglia in adults including retinal ganglion cells, dorsal root ganglion and superior cervical ganglion. SPRY3 enhancer can drive SPRY3 expression in the lung airway, which is consistent with a role in branching morphogenesis and the function of the original Drosophila Spry gene, which is critical for lung morphogenesis, providing a possible explanation for an observed anatomic abnormality in the autistic lung airway. In the human and mouse, the SPRY3 core promoter contains an AG-rich repeat and we found evidence of coexpression, promoter binding and regulation of SPRY3 expression by transcription factors EGR1, ZNF263 and PAX6. Spry3 over-expression in mouse superior cervical ganglion cells inhibits axon branching and Spry3 knockdown in those cells increases axon branching, consistent with known functions of other Sprouty proteins. Novel SPRY3 upstream transcripts that I characterised originate from three start sites in the X-linked F8A3 – TMLHE gene region, which is recently implicated in autism causation. Arising from these findings, I propose that the lung airway abnormality and low levels of blood carnitine found in autism suggest that deregulation of SPRY3 may underpin a subset of autism cases.