3 resultados para Adipose Tissue, beta-Adrenergic Receptors, Heart, Muscle, Pigs

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia represents one of the world’s most devastating illnesses due to its often lifelong course and debilitating nature. The treatment of schizophrenia has vastly improved over recent decades with the discovery of several antipsychotic compounds; however these drugs are not without adverse effects that must be addressed to maximize their therapeutic value. Newer, atypical, antipsychotics are associated with a compilation of serious metabolic side effects including weight gain, insulin resistance, fat deposition, glucose dysregulation and ensuing co-morbidities such as type II diabetes mellitus. The mechanisms underlying these side effects remain to be fully elucidated and adequate interventions are lacking. Further understanding of the factors that contribute these side effects is therefore required in order to develop effective adjunctive therapies and to potentially design antipsychotic drugs in the future with reduced impact on the metabolic health of patients. We investigated if the gut microbiota represented a novel mechanism contributing to the metabolic dysfunction associated with atypical antipsychotics. The gut microbiota comprises the bacteria that exist symbiotically within the gastrointestinal tract, and has been shown in recent years to be involved in several aspects of energy balance and metabolism. We have demonstrated that administration of certain antipsychotics in the rat results in an altered microbiota profile and, moreover, that the microbiota is required for the full scale of metabolic dysfunction to occur. We have further shown that specific antibiotics can attenuate certain aspects of olanzapine and risperidone–induced metabolic dysfunction, in particular fat deposition and adipose tissue inflammation. Mechanisms underlying this novel link appear to involve energy utilization via expression of lipogenic genes as well as reduced inflammatory tone. Taken together, these data indicate that the gut microbiota is an important factor involved in the myriad of metabolic complications associated with antipsychotic therapy. Furthermore, these data support the future investigation of microbial-based therapeutics for not only antipsychotic-induced weight gain but also for tackling the global obesity epidemic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity has been defined as a consequence of energy imbalance, where energy intake exceeds energy expenditure and results in a build-up of adipose tissue. However, this scientific definition masks the complicated social meanings associated with the condition. This research investigated the construction of meaning around obesity at various levels of inquiry to inform how obesity is portrayed and understood in Ireland. A multi-paradigmatic approach was adopted, drawing on theory and methods from psychology and sociology and an analytical framework combining the Common Sense Model and framing theory was employed. In order to examine the exo-level meanings of obesity, content analysis was performed on two media data sets (n=479, n=346) and a thematic analysis was also performed on the multiple newspaper sample (n=346). At the micro-level, obesity discourses were investigated via the thematic analysis of comments sampled from an online message board. Finally, an online survey assessed individual-level beliefs and understandings of obesity. The media analysis revealed that individual blame for obesity was pervasive and the behavioural frame was dominant. A significant increase in attention to obesity over time was observed, manifestations of weight stigma were common, and there was an emotive discourse of blame directed towards the parents of obese children. The micro-level analysis provided insight into the weight-based stigma in society and a clear set of negative ‘default’ judgements accompanied the obese label. The survey analysis confirmed that the behavioural frame was the dominant means of understanding obesity. One of the strengths of this thesis is the link created between framing and the Common Sense Model in the development of an analytical framework for application in the examination of health/illness representations. This approach helped to ascertain the extent of the pervasive biomedical and individual blame discourse on obesity, which establishes the basis for the stigmatisation of obese persons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using C57BL/6J mice fed whey protein isolate (WPI) enriched high fat (HFD) or low-fat diets (LFD), this study tested the hypothesis that WPI directly impacts on adiposity by influencing lipid metabolism. WPI suppressed HFD-induced body fat and increased lean mass at 8 weeks of dietary challenge despite elevated plasma triacylglycerol (TAG) levels, suggesting reduced TAG storage. WPI reduced HFD-associated hypothalamic leptin and insulin receptor (IR) mRNA expression, and prevented HFD-associated reductions in adipose tissue IR and glucose transporter 4 expression. These effects were largely absent at 21 weeks of HFD feeding, however WPI increased lean mass and cause a trend towards decreased fat mass, with notable increased Lactobacillus and decreased Clostridium gut bacterial species. Increasing the protein to carbohydrate ratio enhanced the above effects, and shifted the gut microbiota composition away from the HFD group. Seven weeks of WPI intake with a LFD decreased insulin signalling gene expression in the adipose tissue in association with an increased fat accumulation. WPI reduced intestinal weight and length, suggesting a potential functional relationship between WPI, gastro-intestinal morphology and insulin related signalling in the adipose. Extending the study to 15 weeks, did not affect adipose fat weight, but decreased energy intake, weight gain and intestinal length. The functionality of protein sensing lysophosphatidic acid receptor 5 (LPA5) in 3T3-L1 pre-adipocytes was assessed. Over-expression of the receptor in 3T3-L1 pre-adipocytes provided a growth advantage to the cells and suppressed cellular differentiation into mature fat cells. In conclusion, the data demonstrates WPI impacts on adiposity by influencing lipid metabolism in a temporal manner, resulting possibly due to changes in lean mass, hypothalamic and adipose gene expression, gut microbiota and gastrointestinal morphology. The data also showed LPA5 is a novel candidate in regulating of preadipocyte growth and differentiation, and may mediate dietary protein effects on adipose tissue.