2 resultados para chest pain, clinical pathways, triage

em Repository Napier


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To develop sedation, pain, and agitation quality measures using process control methodology and evaluate their properties in clinical practice. Design: A Sedation Quality Assessment Tool was developed and validated to capture data for 12-hour periods of nursing care. Domains included pain/discomfort and sedation-agitation behaviors; sedative, analgesic, and neuromuscular blocking drug administration; ventilation status; and conditions potentially justifying deep sedation. Predefined sedation-related adverse events were recorded daily. Using an iterative process, algorithms were developed to describe the proportion of care periods with poor limb relaxation, poor ventilator synchronization, unnecessary deep sedation, agitation, and an overall optimum sedation metric. Proportion charts described processes over time (2 monthly intervals) for each ICU. The numbers of patients treated between sedation-related adverse events were described with G charts. Automated algorithms generated charts for 12 months of sequential data. Mean values for each process were calculated, and variation within and between ICUs explored qualitatively. Setting: Eight Scottish ICUs over a 12-month period. Patients: Mechanically ventilated patients. Interventions: None. Measurements and Main Results: The Sedation Quality Assessment Tool agitation-sedation domains correlated with the Richmond Sedation Agitation Scale score (Spearman [rho] = 0.75) and were reliable in clinician-clinician (weighted kappa; [kappa] = 0.66) and clinician-researcher ([kappa] = 0.82) comparisons. The limb movement domain had fair correlation with Behavioral Pain Scale ([rho] = 0.24) and was reliable in clinician-clinician ([kappa] = 0.58) and clinician-researcher ([kappa] = 0.45) comparisons. Ventilator synchronization correlated with Behavioral Pain Scale ([rho] = 0.54), and reliability in clinician-clinician ([kappa] = 0.29) and clinician-researcher ([kappa] = 0.42) comparisons was fair-moderate. Eight hundred twenty-five patients were enrolled (range, 59-235 across ICUs), providing 12,385 care periods for evaluation (range 655-3,481 across ICUs). The mean proportion of care periods with each quality metric varied between ICUs: excessive sedation 12-38%; agitation 4-17%; poor relaxation 13-21%; poor ventilator synchronization 8-17%; and overall optimum sedation 45-70%. Mean adverse event intervals ranged from 1.5 to 10.3 patients treated. The quality measures appeared relatively stable during the observation period. Conclusions: Process control methodology can be used to simultaneously monitor multiple aspects of pain-sedation-agitation management within ICUs. Variation within and between ICUs could be used as triggers to explore practice variation, improve quality, and monitor this over time

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Importance: critical illness results in disability and reduced health-related quality of life (HRQOL), but the optimum timing and components of rehabilitation are uncertain. Objective: to evaluate the effect of increasing physical and nutritional rehabilitation plus information delivered during the post–intensive care unit (ICU) acute hospital stay by dedicated rehabilitation assistants on subsequent mobility, HRQOL, and prevalent disabilities. Design, Setting, and Participants: a parallel group, randomized clinical trial with blinded outcome assessment at 2 hospitals in Edinburgh, Scotland, of 240 patients discharged from the ICU between December 1, 2010, and January 31, 2013, who required at least 48 hours of mechanical ventilation. Analysis for the primary outcome and other 3-month outcomes was performed between June and August 2013; for the 6- and 12-month outcomes and the health economic evaluation, between March and April 2014. Interventions: during the post-ICU hospital stay, both groups received physiotherapy and dietetic, occupational, and speech/language therapy, but patients in the intervention group received rehabilitation that typically increased the frequency of mobility and exercise therapies 2- to 3-fold, increased dietetic assessment and treatment, used individualized goal setting, and provided greater illness-specific information. Intervention group therapy was coordinated and delivered by a dedicated rehabilitation practitioner. Main Outcomes and Measures: the Rivermead Mobility Index (RMI) (range 0-15) at 3 months; higher scores indicate greater mobility. Secondary outcomes included HRQOL, psychological outcomes, self-reported symptoms, patient experience, and cost-effectiveness during a 12-month follow-up (completed in February 2014). Results: median RMI at randomization was 3 (interquartile range [IQR], 1-6) and at 3 months was 13 (IQR, 10-14) for the intervention and usual care groups (mean difference, −0.2 [95% CI, −1.3 to 0.9; P = .71]). The HRQOL scores were unchanged by the intervention (mean difference in the Physical Component Summary score, −0.1 [95% CI, −3.3 to 3.1; P = .96]; and in the Mental Component Summary score, 0.2 [95% CI, −3.4 to 3.8; P = .91]). No differences were found for self-reported symptoms of fatigue, pain, appetite, joint stiffness, or breathlessness. Levels of anxiety, depression, and posttraumatic stress were similar, as were hand grip strength and the timed Up & Go test. No differences were found at the 6- or 12-month follow-up for any outcome measures. However, patients in the intervention group reported greater satisfaction with physiotherapy, nutritional support, coordination of care, and information provision. Conclusions and Relevance: post-ICU hospital-based rehabilitation, including increased physical and nutritional therapy plus information provision, did not improve physical recovery or HRQOL, but improved patient satisfaction with many aspects of recovery.