2 resultados para Richards,Equação de

em Repository Napier


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, language speakers are categorised as mono-lingual, bilingual, or multilingual. It is traditionally assumed in English language education that the ‘lingual’ is something that can be ‘fixed’ in form, written down to be learnt, and taught. Accordingly, the ‘mono’-lingual will have a ‘fixed’ linguistic form. Such a ‘form’ differs according to a number of criteria or influences including region or ‘type’ of English (for example, World Englishes) but is nevertheless assumed to be a ‘form’. ‘Mono-lingualism’ is defined and believed, traditionally, to be ‘speaking one language’; wherever that language is; or whatever that language may be. In this chapter, grounded in an individual subjective philosophy of language, we question this traditional definition. Viewing language from the philosophical perspectives such as those of Bakhtin and Voloshinov, we argue that the prominence of ‘context’ and ‘consciousness’ in language means that to ‘fix’ the form of a language goes against the very spirit of how it is formed and used. We thus challenge the categorisation of ‘mono’-lingualism; proposing that such a categorisation is actually a category error, or a case ‘in which a property is ascribed to a thing that could not possibly have that property’ (Restivo, 2013, p. 175), in this case the property of ‘mono’. Using this proposition as a starting point, we suggest that more time be devoted to language in its context and as per its genuine use as a vehicle for consciousness. We theorise this can be done through a ‘literacy’ based approach which fronts the context of language use rather than the language itself. We outline how we envision this working for teachers, students and materials developers of English Language Education materials in a global setting. To do this we consider Scotland’s Curriculum for Excellence as an exemplar to promote conscious language use in context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To develop sedation, pain, and agitation quality measures using process control methodology and evaluate their properties in clinical practice. Design: A Sedation Quality Assessment Tool was developed and validated to capture data for 12-hour periods of nursing care. Domains included pain/discomfort and sedation-agitation behaviors; sedative, analgesic, and neuromuscular blocking drug administration; ventilation status; and conditions potentially justifying deep sedation. Predefined sedation-related adverse events were recorded daily. Using an iterative process, algorithms were developed to describe the proportion of care periods with poor limb relaxation, poor ventilator synchronization, unnecessary deep sedation, agitation, and an overall optimum sedation metric. Proportion charts described processes over time (2 monthly intervals) for each ICU. The numbers of patients treated between sedation-related adverse events were described with G charts. Automated algorithms generated charts for 12 months of sequential data. Mean values for each process were calculated, and variation within and between ICUs explored qualitatively. Setting: Eight Scottish ICUs over a 12-month period. Patients: Mechanically ventilated patients. Interventions: None. Measurements and Main Results: The Sedation Quality Assessment Tool agitation-sedation domains correlated with the Richmond Sedation Agitation Scale score (Spearman [rho] = 0.75) and were reliable in clinician-clinician (weighted kappa; [kappa] = 0.66) and clinician-researcher ([kappa] = 0.82) comparisons. The limb movement domain had fair correlation with Behavioral Pain Scale ([rho] = 0.24) and was reliable in clinician-clinician ([kappa] = 0.58) and clinician-researcher ([kappa] = 0.45) comparisons. Ventilator synchronization correlated with Behavioral Pain Scale ([rho] = 0.54), and reliability in clinician-clinician ([kappa] = 0.29) and clinician-researcher ([kappa] = 0.42) comparisons was fair-moderate. Eight hundred twenty-five patients were enrolled (range, 59-235 across ICUs), providing 12,385 care periods for evaluation (range 655-3,481 across ICUs). The mean proportion of care periods with each quality metric varied between ICUs: excessive sedation 12-38%; agitation 4-17%; poor relaxation 13-21%; poor ventilator synchronization 8-17%; and overall optimum sedation 45-70%. Mean adverse event intervals ranged from 1.5 to 10.3 patients treated. The quality measures appeared relatively stable during the observation period. Conclusions: Process control methodology can be used to simultaneously monitor multiple aspects of pain-sedation-agitation management within ICUs. Variation within and between ICUs could be used as triggers to explore practice variation, improve quality, and monitor this over time