35 resultados para Genotyping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the influence of brain-derived neurotrophic factor (BDNF) gene variations on cognitive performance and clinical symptomatology in first-episode psychosis (FEP). METHODS: We performed BDNF val66met variant genotyping, cognitive testing (verbal fluency and digit spans) and assessments of symptom severity (as assessed with the PANSS) in a population-based sample of FEP patients (77 with schizophreniform psychosis and 53 with affective psychoses) and 191 neighboring healthy controls. RESULTS: There was no difference in the proportion of Met allele carriers between FEP patients and controls, and no significant influence of BDNF genotype on cognitive test scores in either of the psychosis groups. A decreased severity of negative symptoms was found in FEP subjects that carried a Met allele, and this finding reached significance for the subgroup with affective psychoses (p < 0.01, ANOVA). CONCLUSIONS: These results suggest that, in FEP, the BDNF gene Val66Met polymorphism does not exert a pervasive influence on cognitive functioning but may modulate the severity of negative symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to evaluate the frequencies of human platelet antigens in oncohematological patients with thrombocytopenia and to analyze the probability of their incompatibility with platelet transfusions. METHODS: Platelet antigen genotyping was performed by sequence-specific primer polymerase chain reaction (SSP-PCR) for the HPA-1a, HPA-1b, HPA-2a, HPA-2b, HPA-3a, HPA-3b, HPA-4a, HPA-4b, HPA-5a, HPA-5b; HPA-15a, HPA-15b alleles in 150 patients of the Hematology Service of the Hospital das Clínicas (FMUSP). RESULTS: The allele frequencies found were: HPA-1a: 0.837; HPA-1b: 0.163; HPA-2a: 0.830; HPA-2b: 0.170; HPA-3a: 0.700; HPA-3b: 0.300; HPA-4a: 1; HPA-4b: 0; HPA-5a: 0.887; HPA-5b: 0.113; HPA-15a: 0.457 and HPA-15b: 0.543. CONCLUSIONS: Data from the present study showed that the A allele is more common in the population than the B allele, except for HPA-15. This suggests that patients homozygous for the B allele are more predisposed to present alloimmunization and refractoriness to platelet transfusions by immune causes. Platelet genotyping could be of great value in the diagnosis of alloimmune thrombocytopenia and to provide compatible platelet concentrates for these patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the semiarid of the state of Paraíba, the anti-rabies vaccination is not common, most of the local inhabitants who deal with the animals do not know the incidence of the disease in the region. In this study, samples of foxes (Pseudalopex vetulus), insectivorous bats (Molossus molossus), raccoons (Procyon cancrivorous) and domestic animals brains were submitted to the diagnosis of rabies, by using the direct fluorescent antibody technique (d-FAT) and mouse inoculation test (MIT). Of the 581 examined materials, 50 (8.60 %) were positive for d-FAT and 47 (8.09 %) for MIT. From the positive samples for rabies, RNAs were extracted and transformed to cDNA, at the Laboratory of Rabies/Faculdade de Medicina Veterinária e Zootecnia/USP, SP. The phylogenetic characterization of the N gene was performed at the Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Universidade Nihon, Faculdade de Ciências Bioresource, Fujisawa, Kanagawa, Japão. Based on the results of genotyping and phylogenetic analyzes, it is concluded that the epidemiology of rabies is complex in the semiarid of Paraíba, with different viral variants being maintained in domestic dogs, foxes, insectivorous bats and vampire bats. All the isolates examined belong to the genotype I of the genus Lyssavirus and it is possible to state that in the region, foxes are important sylvatic reservoirs of the rabies virus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haemophilus parasuis infection, known as Glässer’s disease, is characterized by fibrinous polyserositis, arthritis and meningitis in piglets. Although traditional diagnosis is based on herd history, clinical signs, bacterial isolation and serotyping, the molecular-based methods are alternatives for species-specific tests and epidemiologic study. The aim of this study was to characterize H. parasuis strains isolated from different states of Brazil by serotyping, PCR and ERIC-PCR. Serotyping revealed serovar 4 as the most prevalent (24 %), followed by serovars 14 (14 %), 5 (12 %), 13 (8 %) and 2 (2 %), whereas 40 % of the strains were considered as non-typeable. From 50 strains tested 43 (86%) were positive to Group 1 vtaA gene that have been related to virulent strains of H.parasuis. ERIC-PCR was able to type isolates tested among 23 different patterns, including non-typeable strains. ERIC-PCR patterns were very heterogeneous and presented high similarity between strains of the same animal or farm origin. The results indicated ERIC-PCR as a valuable tool for typing H. parasuis isolates collected in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease’s etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.