7 resultados para soda

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black carbon (BC) is an important fraction of many soils worldwide and plays an important role in global C biogeochemistry. However, few studies have examined how it influences the mineralization of added organic matter (AOM) and its incorporation into soil physical fractions and whether BC decomposition is increased by AOM. BC-rich Anthrosols and BC-poor adjacent soils from the Central Amazon (Brazil) were incubated for 532 days either with or without addition of (13)C-isotopically different plant residue. Total C mineralization from the BC-rich Anthrosols with AOM was 25.5% (P < 0.05) lower than with mineralization from the BC-poor adjacent soils. The AOM contributed to a significantly (P < 0.05) higher proportion to the total C mineralized in the BC-rich Anthrosols (91-92%) than the BC-poor adjacent soils (69-80%). The AOM was incorporated more rapidly in BC-rich than BC-poor soils from the separated free light fraction through the intra-aggregate light fraction into the stable organo-mineral fraction and up to 340% more AOM was found in the organo-mineral fraction. This more rapid stabilization was observed despite a significantly (P < 0.05) lower metabolic quotient for BC-rich Anthrosols. The microbial biomass (MB) was up to 125% greater (P < 0.05) in BC-rich Anthrosols than BC-poor adjacent soils. To account for increased MB adsorption onto BC during fumigation extraction, a correction factor was developed via addition of a (13)C-enriched microbial culture. The recovery was found to be 21-41 % lower (P < 0.05) for BC-rich than BC-poor soils due to re-adsorption of MB onto BC. Mineralization of native soil C was enhanced to a significantly greater degree in BC-poor adjacent soils compared to BC-rich Anthrosols as a result of AOM. No positive priming by way of cometabolism due to AOM could be found for aged BC in the soils. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. To verify the hypothesis that crack analysis and a mechanical test would rank a series of composites in a similar order with respect to polymerization stress. Also, both tests would show similar relationships between stress and composite elastic modulus and/or shrinkage. Methods. Soda-lime glass discs (2-mm thick) with a central perforation (3.5-mm diameter) received four Vickers indentations 500 mu m from the cavity margin. The indent cracks were measured (500x) prior and 10 min after the cavity was restored with one of six materials (Kalore/KL, Gradia/GR, Ice/IC, Wave/WV, Majesty Flow/MF, and Majesty Posterior/MP). Stresses at the indent site were calculated based on glass fracture toughness and increase in crack length. Stress at the bonded interface was calculated using the equation for an internally pressurized cylinder. The mechanical test used a universal testing machine and glass rods (5-mm diameter) as substrate. An extensometer monitored specimen height (2 mm). Nominal stress was calculated dividing the maximum shrinkage force by the specimen cross-sectional area. Composite elastic modulus was determined by nanoindentation and post-gel shrinkage was measured using strain gages. Data were subjected to one-way ANOVA/Tukey or Kruskal-Wallis/Mann-Whitney tests (alpha: 5%). Results. Both tests grouped the composites in three statistical subsets, with small differences in overlapping between the intermediate subset (MF, WV) and the highest (MP, IC) or the lowest stress materials (KL, GR). Higher stresses were developed by composites with high modulus and/or high shrinkage. Significance. Crack analysis demonstrated to be as effective as the mechanical test to rank composites regarding polymerization stress. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of substituting Si by M4+ cations in soda-lime silica glasses were analyzed by impedance spectroscopy in the frequency range of 1 Hz-1 MHz. The glass composition was (mol%) 22Na(2)O center dot 8CaO center dot 65SiO(2)center dot 5MO(2), M = Si, Ti, Ge, Zr, Sn, and Ce. Although the Na+ concentration in the glasses is constant, the Zr-containing glass exhibits the highest dc conductivity and the lowest activation energy, while the Ce-containing glass exhibits the lowest conductivity. The activation energies obtained experimentally agree with those obtained by a theoretical equation proposed by Anderson and Stuart. The differences in electrical conductivity presented by the several M-containing glasses are attributed to the effect that the M4+ ion has on the mobility of the diffusing Na+ ion. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we report a simple and environmentally friendly synthesis of silver nanoparticles (AgNps) and their activities towards the oxygen reduction reaction (ORR). Ultraviolet spectroscopy (UV-vis) and transmission electron microscopy confirmed the formation of poly(vinyl pyrrolidone)-protected colloidal AgNps through direct reduction of Ag+ by glycerol in alkaline medium at room temperature. For the ORR tests, the AgNps were directly produced onto carbon to yield the Ag/C catalyst. Levich plots revealed the process to occur via 2.7 electrons, suggesting that the carbon support contributes to the ORR. We discuss here possibilities of improving the catalytic properties of the Ag/C for ORR by optimizing the parameters of the synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated dietary intake patterns (DIP) in adolescents (14-18 year-olds) and the association with demographic and socioeconomic characteristics and lifestyle variables. This school-based survey was carried out among high school students from the city of Maringa in the state of Parana (PR), Brazil (2007). The sample included 991 students (54.5% girls) from high schools. DIPs were investigated by the frequency of weekly consumption of each food group: vegetables, fruit, rice, beans, fried food, sweet food, milk, soda, meat, eggs, alcoholic drinks. Independent variables were: demographic and socioeconomic characteristics and lifestyle variables. DIPS were identified using principal component analysis with orthogonal rotation (varimax). Three components were extracted. Component 1 (fried foods, sweets and soft drinks) was positively associated with not having breakfast for girls and dinner for boys. Moreover, component 2 (consumption of fruit and vegetables) was positively associated with having breakfast at home for boys and number of meals for girls. Component 3 (beans, eggs and meat) was positively associated with having lunch, employment and sedentary behavior level for girls. However, it was negatively associated with having lunch and dinner for boys. Adolescents who have healthier eating patterns also had other healthier behaviors regardless of gender. However, factors associated with dietary patterns differ between boys and girls. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of monoethyl carbonate (MEC) in beer and sparkling wine is demonstrated for the first time, as well as the formation of this species in drinks prepared with a distilled beverage and a carbonated soft drink. A capillary electrophoresis (CE) equipment with two capacitively coupled contactless conductivity detector ((CD)-D-4) was used to identify and quantify this species. The concentrations of MEC in samples of lager beer and rum and cola drink were, respectively, 1.2 and 4.1 mmol/l, which agree with the levels of ethanol and CO2 available in these products. Previous results about the kinetics of the reaction suggest that only a small amount of MEC should be formed after the ingredients of a drink are mixed. However, in all three cases (whisky and club soda: rum with cola; gin and tonic water), MEC was quickly formed, which was attributed to the low pH of the drinks. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (p<0.00001) in the enamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.