82 resultados para insulin resistance
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model. Methods: Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS) during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels, C-reactive protein (CRP), interleukin 6 (IL-6), TNF-alpha and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age. Results: MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo: p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-alpha were higher (p<0.001, all comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 +/- 2, H: 42 +/- 2, C: 45 +/- 2 pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart: 54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%). Conclusions: MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
Resumo:
High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/ 6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/ Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole andmuscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues andmacrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/ 6 mice.
Resumo:
Background: Prolonged preoperative fasting increases insulin resistance (IR). The authors investigated whether an abbreviated preoperative fast with glutamine (GLN) plus a carbohydrate (CHO)-based beverage would improve the organic response after surgery. Methods: Forty-eight female patients (19-62 years) were randomized to either standard fasting (control group) or to fasting with 1 of 3 different beverages before video-cholecystectomy. Beverages were consumed 8 hours (400 mL; placebo group: water; GLN group: water with 50 g maltodextrine plus 40 g GLN; and CHO group: water with 50 g maltodextrine) and 2 hours (200 mL; placebo: water; GLN: water with 25 g maltodextrine plus 10 g GLN; and CHO: water with 25 g maltodextrine) before anesthesia. Blood samples were collected pre- and postoperatively. Results: The mean (SEM) postoperative homeostasis model assessment-insulin resistance was greater (P < .05) in control patients (4.3 [1.3]) than in the other groups (placebo, 1.6 [0.3]; CHO, 2.3 [0.4]; and GLN, 1.5 [0.1]). Glutathione was significantly higher (P < .01) in the GLN group than in both CHO and control groups. Interleukin-6 increased in all groups except the GLN group. The C-reactive protein/albumin ratio was higher (P < .05) in controls than in CHO and GLN groups. The nitrogen balance was less negative in GLN (-2.5 [0.8] gN) than in both placebo (-9.0 [2] gN; P = .001) and control (-6.6 [0.4] gN; P = .04) groups. Conclusions Preoperative intake of a GLN-enriched CHO beverage appears to improve IR and antioxidant defenses and decreases the inflammatory response after video-cholecystectomy. (JPEN J Parenter Enteral Nutr. 2012; 36: 43-52)
Resumo:
The effects of pregestational and gestational low-to-moderate physical training on insulin secretion in undernourished mothers were evaluated. Virgin female Wistar rats were divided into four groups as follows: control (C, n = 5); trained (T, n = 5); low-protein diet (LP, n = 5); trained with a low-protein diet (T + LP, n = 5). Trained rats ran on a treadmill over a period of 4 weeks before mate (5 days week(-1) and 60 min day(-1), at 65% of VO2max). At pregnancy, the intensity and duration of the exercise were reduced. Low-protein groups were provided with an 8% casein diet, and controls were provided with a 17% casein diet. At third day after delivery, mothers and pups were killed and islets were isolated by collagenase digestion of pancreas and incubated for a further 1 h with medium containing 5.6 or 16.7 mM glucose. T mothers showed increased insulin secretion by isolated islets incubated with 16.7 mM glucose, whereas LP group showed reduced secretion of insulin by isolated islets when compared with both C and LP + T groups. Physical training before and during pregnancy attenuated the effects of a low-protein diet on the secretion of insulin, suggesting a potential role for compensation of insulin resistance and preventing gestational diabetes mellitus.
Resumo:
Chronic intake of high-carbohydrate or high-lipid diets is a well-known insulin resistance inducer. This study investigates the immediate effect (1-6 h) of a carbohydrate-or lipid-enriched meal on insulin sensitivity. Fasted rats were refed with standard, carbohydrate-enriched (C), or lipid-enriched (L) meal. Plasma insulin, glucose, and non-esterified fatty acids (NEFA) were measured at 1, 2, 4, and 6 h of refeeding. The glucose-insulin index showed that either carbohydrates or lipids decreased insulin sensitivity at 2 h of refeeding. At this time point, insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) detected insulin resistance in C rats, while GTT confirmed it in L rats. Reduced glycogen and phosphorylated AKT and GSK3 content revealed hepatic insulin resistance in C rats. Reduced glucose uptake in skeletal muscle subjected to the fatty acid concentration that mimics the high NEFA level of L rats suggests insulin resistance in these animals is mainly in muscle. In conclusion, carbohydrate-or lipid-enriched meals acutely disrupt glycemic homeostasis, inducing a transient insulin resistance, which seems to involve liver and skeletal muscle, respectively. Thus, the insulin resistance observed when those types of diets are chronically consumed may be an evolution of repeated episodes of this transient insulin resistance.
Resumo:
Federal University of Sao Paulo
Resumo:
Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303: E272-E282, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00053.2012.-The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNF alpha and IL-1 beta by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNF alpha production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.
Resumo:
In this study, we evaluated the effects of obesity and insulin resistance induced by a high-fat diet on prostate morphophysiology, focusing on cell proliferation, expression of androgen (AR) and estrogen receptors (ER) and proteins of the insulin signaling pathway. Adult male Wistar rats were fed a high-fat diet (20% fat) for 15 weeks, whereas control animals received a balanced diet (4% fat). Both groups were then divided and treated for 2 weeks with 1 mg/kg body weight/day of the aromatase inhibitor letrozole or vehicle only. The ventral prostate was analyzed with immunohistochemical, histopathological, stereological, and Western blotting methods. Obese rats showed insulin resistance, hyperinsulinemia, and reduced plasma testosterone levels. The incidence of prostatic intraepithelial neoplasia (PIN) was 2.7 times higher in obese rats and affected 0.4% of the gland compared with 0.1% PIN areas found in control rats. Obesity doubled cell proliferation in both prostate epithelium and stroma. AR content decreased in the prostate of obese rats and estrogen receptor beta (ER beta) increased in this group. Protein levels of insulin receptor substrate 1 and protein kinase B diminished in the obese group, whereas phosphatidylinositol 3-kinase (PI3K) increased significantly. Most structural changes observed in the prostate of obese rats normalized after letrozole treatment, except for increased stromal cell proliferation and ER beta expression, which might be associated with insulin resistance. This experimental model of obesity and insulin resistance induced by a high-fat diet increases cell proliferation in rat prostate. Such alterations are associated with decreased levels of AR and increased ER beta and PI3K proteins. This change can facilitate the establishment of proliferative lesions in rat prostate.
Resumo:
Intracellular peptides generated by the proteasome and oligopeptidases have been suggested to function in signal transduction and to improve insulin resistance in mice fed a high-caloric diet. The aim of this study was to identify specific intracellular peptides in the adipose tissue of Wistar rats that could be associated with the physiological and therapeutic control of glucose uptake. Using semiquantitative mass spectrometry and LC/MS/MS analyses, we identified ten peptides in the epididymal adipose tissue of the Wistar rats; three of these peptides were present at increased levels in rats that were fed a high-caloric Western diet (WD) compared with rats fed a control diet (CD). The results of affinity chromatography suggested that in the cytoplasm of epididymal adipose tissue from either WD or CD rats, distinctive proteins bind to these peptides. However, despite the observed increase in the WD animals, the evaluated peptides increased insulin-stimulated glucose uptake in 3T3-L1 adipocytes treated with palmitate. Thus, intracellular peptides from the adipose tissue of Wistar rats can bind to specific proteins and facilitate insulin-induced glucose uptake in 3T3-L1 adipocytes.
Resumo:
Objective: We aimed to evaluate the effects of resistance exercise (RE) and leucine (LEU) supplementation on dexamethasone (DEXA)-induced muscle atrophy and insulin resistance. Methods: Male Wistar rats were randomly divided into DEXA(DEX), DEXA + RE (DEX-RE), DEXA + LEU (DEX-LEU), and DEXA + RE + LEU (DEX-RE-LEU) groups. Each group received DEXA 5 mg . kg(-1) . d(-1) for 7 d from drinking water and were pair-fed to the DEX group; LEU-supplemented groups received 0.135 g . kg(-1) . d(-1) through gavage for 7 d; the RE protocol was based on three sessions of squat-type exercise composed by three sets of 10 repetitions at 70% of maximal voluntary strength capacity. Results: The plantaris mass was significantly greater in both trained groups compared with the non-trained groups. Muscle cross-sectional area and fiber areas did not differ between groups. Both trained groups displayed significant increases in the number of intermediated fibers (IIa/IIx), a decreased number of fast-twitch fibers (IIb), an increased ratio of the proteins phospho(Ser2448)/ total mammalian target of rapamycin and phospho(Thr389)/total 70-kDa ribosomal protein S6 kinase. and a decreased ratio of phospho(Ser253)/total Forkhead box protein-3a. Plasma glucose was significantly increased in the DEX-LEU group compared with the DEX group and RE significantly decreased hyperglycemia. The DEX-LEU group displayed decreased glucose transporter-4 translocation compared with the DEX group and RE restored this response. LEU supplementation worsened insulin sensitivity and did not attenuate muscle wasting in rats treated with DEXA. Conversely, RE modulated glucose homeostasis and fiber type transition in the plantaris muscle. Conclusion: Resistance exercise but not LEU supplementation promoted fiber type transition and improved glucose homeostasis in DEXA-treated rats. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.
Resumo:
Objective This study was undertaken to evaluate a possible association of adipocytokines with metabolic syndrome (MetS), inflammation and other cardiovascular risk factors in primary antiphospholipid syndrome (PAPS). Methods Fifty-six PAPS patients and 72 controls were included. Adiponectin, leptin, visfatin, resistin, plasminogen activator inhibitor-1 (PAI-1), lipoprotein (a), glucose, ESR, CRP, uric acid and lipid profiles were measured. The presence of MetS was determined as defined by the International Diabetes Federation (IDF), and insulin resistance was rated using the homeostasis model assessment (HOMA) index. Results Concentrations of leptin were higher [21.5 (12.9-45.7) ng/mL] in PAPS patients than in the controls ([2.1 (6.9-26.8) ng/mL), p=0.001]. In PAPS patients, leptin and PAI-1 levels were positively correlated with BMI (r=0.61 and 0.29), HOMA-IR (r=0.71 and 0.28) and CRP (r=0.32 and 0.36). Adiponectin levels were negatively correlated with BMI (r=-0.28), triglycerides (r=-0.43) and HOMA-IR (r=-0.36) and positively correlated with HDL-c (r=0.37) and anti-beta 2GPI IgG (r=0.31). The presence of MetS in PAPS patients was associated with higher levels of leptin (p=0.002) and PAI-1 (p=0.03) levels and lower levels of adiponectin (p=0.042). Variables that independently influenced the adiponectin concentration were the triglyceride levels (p<0.001), VLDL-c (P=0.002) and anti-beta 2GPI IgG (p=0.042); the leptin levels were BMI (p<0.001), glucose (p=0.046), HOMA-IR (p<0.001) and ESR (p=0.006); and the PAI-1 levels were CRP (p=0.013) and MetS (p=0.048). Conclusion This study provides evidence that adipocytokines may be involved in low-grade inflammation, insulin resistance and MetS in PAPS patients.
Resumo:
Dexamethasone (DEXA) is a potent immunosupressant and anti-inflammatory agent whose main side effects are muscle atrophy and insulin resistance in skeletal muscles. In this context, leucine supplementation may represent a way to limit the DEXA side effects. In this study, we have investigated the effects of a low and a high dose of leucine supplementation (via a bolus) on glucose homeostasis, muscle mass and muscle strength in energy-restricted and DEXA-treated rats. Since the leucine response may also be linked to the administration of this amino acid, we performed a second set of experiments with leucine given in bolus (via gavage) versus leucine given via drinking water. Leucine supplementation was found to produce positive effects (e. g., reduced insulin levels) only when administrated in low dosage, both via the bolus or via drinking water. However, under DEXA treatment, leucine administration was found to significantly influence this response, since leucine supplementation via drinking water clearly induced a diabetic state, whereas the same effect was not observed when supplied via the gavage.
Resumo:
Objective Growth hormone (GH)/insulin-like growth factor (IGF) axis and insulin are key determinants of bone remodelling. Homozygous mutations in the GH-releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GH deficiency (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. Patients and methods A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers [osteocalcin (OC) and CrossLaps], IGF-I, glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. Results There were no differences in age or height between the two groups, but weight (P = 0.007) and BMI (P = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T-score or absolute values of stiffness and OC, but insulin (P = 0.01), HOMAIR (P = 0.01) and CrossLaps (P = 0.01) were lower in MUT/N. There was no correlation between OC and glucose, OC and HOMAIR in the 140 individuals as a whole or in the separate MUT/N or N/N groups. Conclusions This study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality.
Resumo:
Abstract Aim The purpose of the present study was to assess the dietary fat intake, glucose, insulin, Homeostasis model assessment for insulin resistance HOMA-IR, and endotoxin levels and correlate them with adipokine serum concentrations in obese adolescents who had been admitted to long-term interdisciplinary weight-loss therapy. Design The present study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (n = 18, aged 15–19 y) with a body mass index > 95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. We collected blood samples, and IL-6, adiponectin, and endotoxin concentrations were measured by ELISA. Food intake was measured using 3-day diet records. In addition, we assessed glucose and insulin levels as well as the homeostasis model assessment for insulin resistance (HOMA-IR). Results The most important finding from the present investigation was that the long-term interdisciplinary lifestyle therapy decreased dietary fat intake and endotoxin levels and improved HOMA-IR. We observed positive correlations between dietary fat intake and endotoxin levels, insulin levels, and the HOMA-IR. In addition, endotoxin levels showed positive correlations with IL-6 levels, insulin levels and the HOMA-IR. Interestingly, we observed a negative correlation between serum adiponectin and both dietary fat intake and endotoxin levels. Conclusions The present results indicate an association between dietary fat intake and endotoxin level, which was highly correlated with a decreased pro-inflammatory state and an improvement in HOMA-IR. In addition, this benefits effect may be associated with an increased adiponectin level, which suggests that the interdisciplinary therapy was effective in improving inflammatory pathways.