16 resultados para gene transcriptional regulatory network, stochastic differential equation, membership function

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern sugarcane cultivars are complex hybrids resulting from crosses among several Saccharum species. Traditional breeding methods have been employed extensively in different countries over the past decades to develop varieties with increased sucrose yield and resistance to pests and diseases. Conventional variety improvement, however, may be limited by the narrow pool of suitable genes. Thus, molecular genetics is seen as a promising tool to assist in the process of developing improved varieties. The SUCEST-FUN Project (http://sucest-fun.org) aims to associate function with sugarcane genes using a variety of tools, in particular those that enable the study of the sugarcane transcriptome. An extensive analysis has been conducted to characterise, phenotypically, sugarcane genotypes with regard to their sucrose content, biomass and drought responses. Through the analysis of different cultivars, genes associated with sucrose content, yield, lignin and drought have been identified. Currently, tools are being developed to determine signalling and regulatory networks in grasses, and to sequence the sugarcane genome, as well as to identify sugarcane promoters. This is being implemented through the SUCEST-FUN (http://sucest-fun.org) and GRASSIUS databases (http://grassius.org), the cloning of sugarcane promoters, the identification of cis-regulatory elements (CRE) using Chromatin Immunoprecipitation-sequencing (ChIP-Seq) and the generation of a comprehensive Signal Transduction and Transcription gene catalogue (SUCAST Catalogue).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most patients with Kabuki syndrome (KS) are the only person in their family with the condition. However, familial cases of KS have been described showing evidence that this syndrome can be inherited as a dominant trait with variable expressivity. We report on two related individuals with facial findings characteristic of KS. The proposita had arched eyebrows, long and upward slanting palpebral fissures, cleft lip and palate, retromicrognathia, brachydactyly of hands and feet, stubby fingers, nail hypoplasia, and prominent finger pads. Her mother had eyebrows with dispersed lateral half, long and upward slanting palpebral fissures, retrognathia, abnormal and posteriorly rotated ears, prominent finger pads, brachydactyly of feet, learning difficulties, and psychomotor development delay. DNA sequencing revealed a novel missense mutation in the MLL2 gene in both the proposita and her mother. The mutation (p.R5432Q) was found in the exon 51, within the SET domain of the gene, which confers methyltransferase activity on the protein. Therefore, the epigenetic and transcriptional regulatory properties of this protein may be altered and this suggests that the mutation is the cause of phenotype observed in both the patient and her mother. The clinical signs and the molecular evidence in this family further support the notion that KS is an autosomal dominant condition with variable expressivity. To our knowledge this is the first report of a Brazilian family with recurrence of this syndrome. (C) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN 10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genes involved in host-pathogen interactions are often strongly affected by positive natural selection. The Duffy antigen, coded by the Duffy antigen receptor for chemokines (DARC) gene, serves as a receptor for Plasmodium vivax in humans and for Plasmodium knowlesi in some nonhuman primates. In the majority of sub-Saharan Africans, a nucleic acid variant in GATA-1 of the gene promoter is responsible for the nonexpression of the Duffy antigen on red blood cells and consequently resistance to invasion by P. vivax. The Duffy antigen also acts as a receptor for chemokines and is expressed in red blood cells and many other tissues of the body. Because of this dual role, we sequenced a 3,000-bp region encompassing the entire DARC gene as well as part of its 5' and 3' flanking regions in a phylogenetic sample of primates and used statistical methods to evaluate the nature of selection pressures acting on the gene during its evolution. We analyzed both coding and regulatory regions of the DARC gene. The regulatory analysis showed accelerated rates of substitution at several sites near known motifs. Our tests of positive selection in the coding region using maximum likelihood by branch sites and maximum likelihood by codon sites did not yield statistically significant evidence for the action of positive selection. However, the maximum likelihood test in which the gene was subdivided into different structural regions showed that the known binding region for P. vivax/P. knowlesi is under very different selective pressures than the remainder of the gene. In fact, most of the gene appears to be under strong purifying selection, but this is not evident in the binding region. We suggest that the binding region is under the influence of two opposing selective pressures, positive selection possibly exerted by the parasite and purifying selection exerted by chemokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The class of electrochemical oscillators characterized by a partially hidden negative differential resistance in an N-shaped current potential curve encompasses a myriad of experimental examples. We present a comprehensive methodological analysis of the oscillation frequency of this class of systems and discuss its dependence on electrical and kinetic parameters. The analysis is developed from a skeleton ordinary differential equation model, and an equation for the oscillation frequency is obtained. Simulations are carried out for a model system, namely, the nickel electrodissolution, and the numerical results are confirmed by experimental data on this system. In addition, the treatment is further applied to the electro-oxidation of ethylene glycol where unusually large oscillation frequencies have been reported. Despite the distinct chemistry underlying the oscillatory dynamics of these systems, a very good agreement between experiments and theoretical predictions is observed. The application of the developed theory is suggested as an important step for primary kinetic characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept behind a biodegradable ligament device is to temporarily replace the biomechanical functions of the ruptured ligament, while it progressively regenerates its capacities. However, there is a lack of methods to predict the mechanical behaviour evolution of the biodegradable devices during degradation, which is an important aspect of the project. In this work, a hyper elastic constitutive model will be used to predict the mechanical behaviour of a biodegradable rope made of aliphatic polyesters. A numerical approach using ABAQUS is presented, where the material parameters of the model proposal are automatically updated in correspondence to the degradation time, by means of a script in PYTHON. In this method we also use a User Material subroutine (UMAT) to apply a failure criterion base on the strength that decreases according to a first order differential equation. The parameterization of the material model proposal for different degradation times were achieved by fitting the theoretical curves with the experimental data of tensile tests on fibres. To model all the rope behaviour we had considered one step of homogenisation considering the fibres architectures in an elementary volume. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The filamentous fungus Aspergillus nidulans has been used as a fungal model system to study the regulation of xylanase production. These genes are activated at transcriptional level by the master regulator the transcriptional factor XInR and repressed by carbon catabolite repression (CCR) mediated by the wide-domain repressor CreA. Here, we screened a collection of 42 A. nidulans F-box deletion mutants grown either in xylose or xylan as the single carbon source in the presence of the glucose analog 2-deoxy-D-glucose, aiming to identify mutants that have deregulated xylanase induction. We were able to recognize a null mutant in a gene (fbxA) that has decreased xylanase activity and reduced xInA and xInD mRNA accumulation. The Delta fbxA mutant interacts genetically with creAd-30, creB15, and creC27 mutants. FbxA is a novel protein containing a functional F-box domain that binds to Skp1 from the SCF-type ligase. Blastp analysis suggested that FbxA is a protein exclusive from fungi, without any apparent homologs in higher eukaryotes. Our work emphasizes the importance of the ubiquitination in the A. nidulans xylanase induction and CCR. The identification of FbxA provides another layer of complexity to xylanase induction and CCR phenomena in filamentous fungi. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct analytical and numerical vortex solutions for an extended Skyrme-Faddeev model in a (3 + 1) dimensional Minkowski space-time. The extension is obtained by adding to the Lagrangian a quartic term, which is the square of the kinetic term, and a potential which breaks the SO(3) symmetry down to SO(2). The construction makes use of an ansatz, invariant under the joint action of the internal SO(2) and three commuting U(1) subgroups of the Poincare group, and which reduces the equations of motion to an ordinary differential equation for a profile function depending on the distance to the x(3) axis. The vortices have finite energy per unit length, and have waves propagating along them with the speed of light. The analytical vortices are obtained for a special choice of potentials, and the numerical ones are constructed using the successive over relaxation method for more general potentials. The spectrum of solutions is analyzed in detail, especially its dependence upon special combinations of coupling constants.