21 resultados para cell metabolism

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

DEP domain-containing mTOR-interacting protein (DEPTOR) inhibits the mechanistic target of rapamycin (mTOR), but its in vivo functions are unknown. Previous work indicates that Deptor is part of the Fob3a quantitative trait locus (QTL) linked to obesity/leanness in mice, with Deptor expression being elevated in white adipose tissue (WAT) of obese animals. This relation is unexpected, considering the positive role of mTOR in adipogenesis. Here, we dissected the Fob3a QTL and show that Deptor is the highest-priority candidate promoting WAT expansion in this model. Consistently, transgenic mice overexpressing DEPTOR accumulate more WAT. Furthermore, in humans, DEPTOR expression in WAT correlates with the degree of obesity. We show that DEPTOR is induced by glucocorticoids during adipogenesis and that its overexpression promotes, while its suppression blocks, adipogenesis. DEPTOR activates the proadipogenic Akt/PKB-PPAR-gamma axis by dampening mTORC1-mediated feedback inhibition of insulin signaling. These results establish DEPTOR as a new regulator of adipogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background DNA repair genes encode proteins that protect organisms against genetic damage generated by environmental agents and by-products of cell metabolism. The importance of these genes in life maintenance is supported by their high conservation, and the presence of duplications of such genes may be easily traced, especially in prokaryotic genomes. Results The genome sequences of two Xanthomonas species were used as the basis for phylogenetic analyses of genes related to DNA repair that were found duplicated. Although 16S rRNA phylogenetic analyses confirm their classification at the basis of the gamma proteobacteria subdivision, differences were found in the origin of the various genes investigated. Except for lexA, detected as a recent duplication, most of the genes in more than one copy are represented by two highly divergent orthologs. Basically, one of such duplications is frequently positioned close to other gamma proteobacteria, but the second is often positioned close to unrelated bacteria. These orthologs may have occurred from old duplication events, followed by extensive gene loss, or were originated from lateral gene transfer (LGT), as is the case of the uvrD homolog. Conclusions Duplications of DNA repair related genes may result in redundancy and also improve the organisms' responses to environmental challenges. Most of such duplications, in Xanthomonas, seem to have arisen from old events and possibly enlarge both functional and evolutionary genome potentiality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxidant responses of mice to two diets control, commercial and the purified AIN 93 diet, commonly used in experiments with rodents. Results: Malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and superoxide dismutase (SOD) and glutathione reductase (GR) activities determined in the liver were lower in the group of mice fed with the AIN 93 diet, while catalase (CAT) activity was higher in the same group, when compared to the group fed on the commercial diet. Liver glutathione peroxidase (GSH-Px) activity was similar in the groups fed on either AIN 93 or the commercial diets. Two SOD isoforms, Mn-SODII and a Cu/Zn-SODV, were specifically reduced in the liver of the AIN 93 diet fed animals. Conclusions: The clear differences in antioxidant responses observed in the livers of mice fed on the two diets suggest that the macro- and micro-nutrient components with antioxidant properties, including vitamin E, can promote changes in the activity of enzymes involved in the removal of the ROS generated by cell metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objectives of this study were to evaluate the effect of low-level laser irradiation (LLLI) on bovine oocyte and granulosa cells metabolism during in vitro maturation (IVM) and further embryo development. Cumulus-oocytes complexes (COCs) were subjected (experimental group) or not (control group) to irradiation with LLLI in a 633-nm wavelength and 1 J/cm2 fluency. The COCs were evaluated after 30 min, 8, 16, and 24 h of IVM. Cumulus cells were evaluated for cell cycle status, mitochondrial activity, and viability (flow cytometry). Oocytes were assessed for meiotic progression status (nuclear staining), cell cycle genes content [real-time polymerase chain reaction (PCR)], and signal transduction status (western blot). The COCs were also in vitro fertilized, and the cleavage and blastocyst rates were assessed. Comparisons among groups were statistically performed with 5% significance level. For cumulus cells, a significant increase in mitochondrial membrane potential and the number of cells progressing through the cycle could be observed. Significant increases on cyclin B and cyclin-dependent kinase (CDK4) levels were also observed. Concerning the oocytes, a significantly higher amount of total mitogen-activated protein kinase was found after 8 h of irradiation, followed by a decrease in all cell cycle genes transcripts, exception made for the CDK4. However, no differences were observed in meiotic progression or embryo production. In conclusion, LLLI is an efficient tool to modulate the granulosa cells and oocyte metabolism

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA(3). The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA(3) or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA(3) application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reasons for performing study: Alternative methods to evaluate the joint condition in asymptomatic osteochondrosis dissecans (OCD) and other joint diseases may be useful. Objectives: To investigate possible changes in synovial fluid composition that may lead to joint conditions in asymptomatic OCD, in mature horses. Methods: Animals aged >2 years, of different breeds, with OCD in the intermediate ridge of distal tibia, symptomatic or not, were studied. Synovial fluid samples (10 healthy; 11 asymptomatic OCD; 25 symptomatic OCD) were collected by arthroscopy from 29 horses. Glycosaminoglycans (GAGs) were analysed by a combination of agarose gel electrophoresis and enzymatic degradation with specific GAG lyases. The viscosity, white blood cell (WBC) count, protein concentration and hyaluronic acid (HA) molecular weight were also determined. Results: The method used here to analyse synovial fluid GAGs is reliable, reproducible and specific. The main synovial fluid GAGs are HA and chondroitin sulphate (CS), 93% and 7% respectively in normal horses. In symptomatic OCD, the concentrations of both increased (expressed as GAG/urea ratios), but CS increased more. The CS increased also in asymptomatic OCD. An inflammatory reaction was suggested by the increased WBC counts in OCD. The molecular weight of the synovial fluid HA was reduced in OCD, explaining the lower viscosity observed. Conclusions: The increased CS in synovial fluid of OCD joints in mature horses suggests that the synovial fluid CS and the WBC count are good markers of the joint conditions, allowing the identification of pathological phase in joint diseases. Potential relevance: The analysis of synovial fluid GAGs shows that cartilage damage occurs even in asymptomatic OCD, implying that arthroscopic removal of osteochondral fragments should be performed even in asymptomatic OCD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of gamma-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas. Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4 mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(Diurnal changes in storage carbohydrate metabolism in cotyledons of the tropical tree Hymenaea courbaril L. (Leguminosae)). The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (alpha-xylosidase, beta-galactosidase, beta-glucosidase and xyloglucan endo-beta-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, alpha-xilosidase seems to be more important than beta-glucosidase and beta-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5'NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy) and inosine accumulation (ONS76). On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5'NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5'NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5'NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iodine is a critical element involved in thyroid hormone synthesis. Its efflux into the follicular lumen is thought to occur, in part, through pendrin at the apical membrane of thyrocytes. This study attempted to investigate whether iodide administration affects SLC26A4 mRNA expression in rat thyroid and in PCCl3 cells. Rats and cells were treated or not with Nal from 30 min up to 48 h. One group was concomitantly treated with sodium perchlorate. SLC26A4 mRNA expression was also investigated in PCCl3 cells treated with actinomycin D prior to Nal treatment. Iodide administration significantly increased SLC26A4 mRNA content in both models. The simultaneous administration of Nal and perchlorate, as well as the treatment of PCCl3 cells with actinomycin D prevented this effect, indicating that intracellular iodide is essential for this event, which appears to be triggered by transcriptional mechanisms. These data show that intracellular iodide rapidly upregulates SLC26A4 mRNA expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1 diabetes mellitus is a chronic disease that results from the autoimmune response against pancreatic insulin producing beta cells. Apart of several insulin regimens, since the decade of 80s various immunomodulatory regimens were tested aiming at blocking some steps of the autoimmune process against beta cell mass and at promoting beta cell preservation. In the last years, some independent research groups tried to cure type 1 diabetes with an "immunologic reset" provided by autologous hematopoietic stem cell transplantation in newly diagnosed patients, and the majority of patients became free form insulin with increasing levels of C-peptide along the time. In this review, we discuss the biology of hematopoietic stem cells and the possible advantages and disadvantages related to the high dose immunosuppression followed by autologous hematopoietic stem cell transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis ( FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T ( iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin( ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1 alpha, IL-1 beta, IL-17, TNF-alpha, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-beta analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-beta could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-beta, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-beta through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management.