8 resultados para cDNA library

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Triatoma matogrossensis is a Hemiptera that belongs to the oliveirai complex, a vector of Chagas' disease that feeds on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SGs) produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. Exposure to T. matogrossensis was also found to be a risk factor associated with the endemic form of the autoimmune skin disease pemphigus foliaceus, which is described in the same regions where Chagas' disease is observed in Brazil. To obtain a further insight into the salivary biochemical and pharmacologic diversity of this kissing bug and to identify possible allergens that might be associated with this autoimmune disease, a cDNA library from its SGs was randomly sequenced. We present the analysis of a set of 2,230 (SG) cDNA sequences, 1,182 of which coded for proteins of a putative secretory nature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plant pathogen Fusarium solani causes a disease root rot of common bean (Phaseolus vulgaris) resulting in great losses of yield in irrigated areas of the Southeast and Midwest regions of Brazil. Species of the genus Trichoderma have been used in the biological control of this pathogen as an alternative to chemical control. To gain new insights into the biocontrol mechanism used by Trichoderma harzianum against the phytopathogenic fungus, Fusarium solani, we performed a transcriptome analysis using expressed sequence tags (ESTs) and quantitative real-time PCR (RT-qPCR) approaches. A cDNA library from T. harzianum mycelium (isolate ALL42) grown on cell walls of F. solani (CWFS) was constructed and analyzed. A total of 2927 high quality sequences were selected from 3845 and 37.7% were identified as unique genes. The Gene Ontology analysis revealed that the majority of the annotated genes are involved in metabolic processes (80.9%), followed by cellular process (73.7%). We tested twenty genes that encode proteins with potential role in biological control. RT-qPCR analysis showed that none of these genes were expressed when T. harzianum was challenged with itself. These genes showed different patterns of expression during in vitro interaction between T. harzianum and F. solani. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amblyomin-X is a Kunitz-type serine protease inhibitor (Kunitz-type SPI) designed from the cDNA library of the Amblyomma cajennense tick, which displays in vivo anti-tumor activities. Here, the mechanisms of actions of Amblyomin-X in vascular endothelial growth factor A (VEGF-A)-induced angiogenesis were characterized. Topical application of Amblyomin-X (10 or 100 ng/10 mu l; each 48 h) inhibited VEGF-A-induced (10 ng/10 mu l; each 48 h) angiogenesis in the dorsal subcutaneous tissue in male Swiss mice. Moreover, similar effect was observed in the VEGF-A-induced angiogenesis in the chicken chorioallantoic membrane (CAM). Additional in vitro assays in t-End cells showed that Amblyomin-X treatment delayed the cell cycle, by maintaining them in G0/G1 phase, and inhibited cell proliferation and adhesion, tube formation and membrane expression of the adhesion molecule platelet-endothelial cell adhesion molecule-1 (PECAM-I), regardless of mRNA synthesis. Together, results herein reveal the role of Kunitz-type SPI on in vivo VEGF-A-induced angiogenesis, by exerting modulatory actions on endothelial cell proliferation and adhesion, especially on membrane expression of PECAM-1. These data provide further mechanisms of actions of Kunitz-type SPI, corroborating their relevance as scientific tools in the design of therapeutic molecules. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unraveling the repertoire of venom toxins of Bothropoides pauloensis was assessed by snake venomics and venom gland transcriptomic surveys. Both approaches yielded converging overall figures, pointing to metalloproteinases (similar to 37%), PLA(2)s (26-32%), and vasoactive (bradykinin-potentiating) peptides (12-17%) as the major toxin classes. The high occurrence of SVMPs, PLA(2) molecules, vasoactive peptides, along with serine proteinases, explains the local and systemic effects observed in envenomations by B. pauloensis. Minor (<3%) C-type lectin, serine proteinase, L-amino acid oxidase, nerve growth factor, and CRISP molecules were also identified in the transcriptome and the proteome. Low abundance (0.3%) EST singletons coding for vascular endothelial growth factor (svVEGF), ohanin, hyaluronidase, and 5' nucleotidase were found only in the venom gland cDNA library. At the molecular level, the transcriptomic and proteomic datasets display low compositional concordance. In particular, although there is good agreement between transcriptome and proteome in the identity of BPPs, PLA(2) molecules and L-amino acid oxidase, both datasets strongly depart in their C-type lectin and SVMP complements. These data support the view that venom composition is influenced by transcriptional and translational mechanisms and emphasize the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the toxinological profile and natural history of the snake venom. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Dipteran a native Brazilian insect that has become a valuable model system for developmental biology research because it provides an interesting opportunity to study a different type of insect oogenesis. Sequences from a cDNA library that was constructed with poly A + RNA from the ovaries of larvae at different ages were analyzed. Molecular characterization confirmed interesting findings, such as the presence of . The gene encodes a conserved RNA-binding protein that is required during early development for the maintenance and division of the primordial germ cells of Diptera. plays an important role in specifying the posterior regions of insect embryos and is important for abdomen formation. In the present work, we showed the spatial and temporal expression profiles of this important gene, which is involved in oogenesis and early development. Data mining techniques were used to obtain the complete sequence of . Bioinformatic tools were used to determine the following: (1) the secondary structure of the 3'-untranslated region of the mRNA, (2) the encoded protein of the isolated gene, (3) the conserved zinc-finger domains of the Nanos protein, and (4) phylogenetic analyses. Furthermore, RNA in situ hybridization and immunolocalization were used to determine mRNA and protein expression in the tissues that were studied and to define as a germ cell molecular marker.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schistosoma mansoni is one of the agents of schistosomiasis, a chronic and debilitating disease. Here we, present a transcriptome-wide characterization of adult S. mansoni males by high-throughput RNA-sequencing. We obtained 1,620,432 high-quality ESTs from a directional strand-specific cDNA library, resulting in a 26% higher coverage of genome bases than that of the public ESTs available at NCBI. With a 15 x-deep coverage of transcribed genomic regions, our data were able to (i) confirm for the first time 990 predictions without previous evidence of transcription; (ii) correct gene predictions; (iii) discover 989 and 1196 RNA-seq contigs that map to intergenic and intronic genomic regions, respectively, where no gene had been predicted before. These contigs could represent new protein-coding genes or non-coding RNAs (ncRNAs). Interestingly, we identified 11 novel Micro-exon genes (MEGs). These data reveal new features of the S. mansoni transcriptional landscape and significantly advance our understanding of the parasite transcriptome. (c) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A cDNA coding for a digestive cathepsin L, denominated Sl-CathL, was isolated from a cDNA library of Sphenophorus levis larvae, representing the most abundant EST (10.49%) responsible for proteolysis in the midgut. The open reading frame of 972 bp encodes a preproenzyme similar to midgut cathepsin L-like enzymes in other coleopterans. Recombinant Sl-CathL was expressed in Pichia pastoris, with molecular mass of about 42 kDa. The recombinant protein was catalytically activated at low pH and the mature enzyme of 39 kDa displayed thermal instability and maximal activity at 37 degrees C and pH 6.0. Immunocytochemical analysis revealed Sl-CathL production in the midgut epithelium and secretion from vesicles containing the enzyme into the gut lumen, confirming an important role for this enzyme in the digestion of the insect larvae. The expression profile identified by RT-PCR through the biological cycle indicates that Sl-CathL is mainly produced in larval stages, with peak expression in 30-day-old larvae. At this stage, the enzyme is 1250-fold more expressed than in the pupal fase, in which the lowest expression level is detected. This enzyme is also produced in the adult stage, albeit in lesser abundance, assuming the presence of a different array of enzymes in the digestive system of adults. Tissue-specific analysis revealed that Sl-CathL mRNA synthesis occurs fundamentally in the larval midgut, thereby confirming its function as a digestive enzyme, as detected in immunolocalization assays. The catalytic efficiency of the purified recombinant enzyme was calculated using different substrates (Z-Leu-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC) and rSl-CathL exhibited hydrolysis preference for Z-Leu-Arg-AMC (k(cat)/K-m = 37.53 mM S-1), which is similar to other insect cathepsin L-like enzymes. rSl-CathL activity inhibition assays were performed using four recombinant sugarcane cystatins. rSl-CathL was strongly inhibited by recombinant cystatin CaneCPI-4 (K-i = 0.196 nM), indicating that this protease is a potential target for pest control. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Plasmodium vivax is the most widely distributed human malaria, responsible for 70–80 million clinical cases each year and large socio-economical burdens for countries such as Brazil where it is the most prevalent species. Unfortunately, due to the impossibility of growing this parasite in continuous in vitro culture, research on P. vivax remains largely neglected. Methods A pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of P. vivax was performed. To do so, 1,184 clones from a cDNA library constructed with parasites obtained from 10 different human patients in the Brazilian Amazon were sequenced. Sequences were automatedly processed to remove contaminants and low quality reads. A total of 806 sequences with an average length of 586 bp met such criteria and their clustering revealed 666 distinct events. The consensus sequence of each cluster and the unique sequences of the singlets were used in similarity searches against different databases that included P. vivax, Plasmodium falciparum, Plasmodium yoelii, Plasmodium knowlesi, Apicomplexa and the GenBank non-redundant database. An E-value of <10-30 was used to define a significant database match. ESTs were manually assigned a gene ontology (GO) terminology Results A total of 769 ESTs could be assigned a putative identity based upon sequence similarity to known proteins in GenBank. Moreover, 292 ESTs were annotated and a GO terminology was assigned to 164 of them. Conclusion These are the first ESTs reported for P. vivax and, as such, they represent a valuable resource to assist in the annotation of the P. vivax genome currently being sequenced. Moreover, since the GC-content of the P. vivax genome is strikingly different from that of P. falciparum, these ESTs will help in the validation of gene predictions for P. vivax and to create a gene index of this malaria parasite.