6 resultados para Intestinal Development

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colostrum intake in newborn goat kids is essential for the acquisition of immunoglobulins (Ig) and influencing development of gastrointestinal mucosa. The present study investigated small intestine structure in the postnatal goat kid fed lyophilized bovine colostrum, an alternative source of antibodies to small ruminants, or goat colostrum using scanning electron microscopy technique. At 0,7 and 14 h of life 15 male newborns received 5% of body weight of lyophilized bovine colostrum (LBC) and 14 goat colostrum (GC), both with 55 mg/mL of IgG. Samples of duodenum, medium jejunum and ileum were collected at 18, 36 and 96 h of life. Three animals were sampled at birth without colostrum intake (0 h). The enteric tissues were analyzed for villi density (villi/cm(2)) and morphological characteristics. The villi density did not differ between treatment, sampling time and intestinal segments (P>0.05). The morphological characteristics were not different between LBC and GC in all segments. Duodenal villi were fingerlike, thick and short, and with different heights. Duodenal folds could also be verified. Frequent anastomoses in all sampling times were observed in this segment. In the jejunum, fingerlike villi, thin and thick, of different heights were observed in all sampling times as well as leaf-shaped villi. Vacuoles with colostrum were observed in the jejunum of goats sampled at 18 h of life. In ileum, fingerlike villi were observed in all sampling times. At 0 and 96 h of life, thick and low villi were verified while at 18 and 36 h the villi showed different heights and widths. At all sampling times, regularly cell extrusion processes were observed with grouped cells at the apex of the ileum villi and with isolated cells along the villi. In the first 4 days of goat kids' life the small intestine structure was unaffected by different sources of colostrum, goat or lyophilized bovine, and by the replacement of fetal enterocytes, which are able to absorb macromolecules, by adult-type ones. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factor B lymphocyte induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice. In this study, we show that Blimp-1 is required to restrain the production of the inflammatory cytokine IL-17 by Th cells in vivo. Blimp-1CKO mice have greater numbers of IL-17 producing TCR beta(+)CD4(+)cells in lymphoid organs and in the intestinal mucosa. The increase in IL-17 producing cells was not restored to normal levels in wild-type and Blimp-1CKO mixed bone marrow chimeric mice, suggesting an intrinsic role for Blimp-1 in constraining the production of IL-17 in vivo. The observation that Blimp-1 deficient CD4(+) T cells are more prone to differentiate into IL-17(+)/IFN-gamma(+) cells and cause severe colitis when transferred to Rag1-deficient mice provides further evidence that Blimp-1 represses IL-17 production. Analysis of Blimp-1 expression at the single cell level during Th differentiation reveals that Blimp-1 expression is induced in Th1 and Th2 but repressed by TGF-beta in Th17 cells. Collectively, the results described here establish a new role for Blimp-1 in regulating IL-17 production in vivo. The Journal of Immunology, 2012,189: 5682-5693.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligoryzomys (Cricetidae, Sigmodontinae) is a common rodent genus from South America that includes a couple of very similar species. Related species have been used as experimental model for understanding several diseases for which these species are reservoirs. In order to provide a better understanding of the embryological aspects of this group, herein we showed data on the embryonic and fetal development in Oligoryzomys sp. Eight specimens of different stages of gestation were obtained from the Collection of the Zoology Museum of University of Sao Paulo, Brazil. Gestational ages were estimated by crown-rump-length according to Evans and Sack (1973). To address our analysis after examining the gross morphology, tissues from several organs were processed for light and scanning electron microscopy. Morphological data on the systems (nervous system, cardiorespiratory system, intestinal tract and urogenital system) were described in detail. Finally, the findings were compared with what is known about embryological aspects in other rodent species in order to establish similarities and differences during the organogenesis in different species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal