6 resultados para Environmental Chemistry

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Results show that at initial concentration of 20 mg L-1, atrazine was completely removed in up to 30 min using 10 mA cm(-2) electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the acute toxicity of atrazine and picloram separately to grass carp (Ctenopharyngodon idella). Firstly, fingerlings were exposed to nominal concentrations of these herbicides to determine the lethal concentration (LC50) (96 h). After this, the animals were treated with sub-acute concentrations of the herbicides to measure the effects on gill histology. The LC50 (96 h) of the atrazine and picloram were, respectively, 37mg L-1 and 4.4 mgL(-1). Four types of alterations were found in gills exposed to atrazine, which were epithelial lifting, partial cell proliferation, lamellar fusion, and aneurysm. Nominal concentrations of picloram caused epithelial lifting, partial cell proliferation, and lamellar fusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different components of the mixed function oxidase (MFO) system and the levels of fluorescent aromatic compounds in bile (FACs) were measured in Cathorops spixii in order to assess the impact of polycyclic aromatic hydrocarbons (PAHs). Fish were sampled in an estuary (Santos/Sao Vicente) with a history of contamination by PAHs, mainly due to the presence of the industrial complex of Cubatao city and of another of low anthropogenic influence (Cananeia) on the Brazilian coast. FACs were higher in fish from the polluted site, and the PAH 5 and 6-ring metabolites were the most frequent - with 14% and 15%, respectively. Levels of the different components of the MFO system showed the same variation profile as the FACs for both estuaries. Therefore, the values found for somatic indexes and biomarkers with data of bile PAH metabolites indicate the presence of organic contaminants, especially in the area subject to the influence of the industrial complex on the Santos/Sao Vicente estuary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bare graphite-polyurethane composite was evaluated in the tetracycline (TC) determination in natural water samples. Using differential pulse voltammetry (DPV), a linear response was observed in the range of 4.00-40.0 mu mol L-1 with limit of detection of 2.80 mu mol L-1, without the need of surface renewing between successive runs. During the tetracycline determination in water samples, recoveries between 92.6 and 100% were found. The results for TC determination in water samples after a pre-concentration stage agreed with spiked value at a 95% confidence level according to student t-test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bare graphite-epoxy composite was evaluated as an electrode material in the determination of atenolol in natural water samples and pharmaceutical formulations for which the analyte was spiked. Using a DPV procedure, a linear response was observed in the 4.45-84.7 mu mol L-1 range with a LOD = 2.23 mu mol L-1, without need of surface renewal between successive runs, and recoveries between 92.5 and 107.5% for pharmaceutical formulations. The results obtained from the proposed procedure agreed with HPLC results within a 95% confidence level. During the determination of atenolol in water samples, recoveries between 96.1 and 102.6% were found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. Results This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. Conclusion AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.