3 resultados para Cocaína
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Diante da relevância mundial do desafio no enfrentamento do tema concernente ao uso de drogas, o presente artigo tem por escopo principal abordar alguns aspectos sobre a cocaína em suas diversas formas de consumo, isto é, como chá, em pó (inalada), como injeção (diluída) e fumo – neste caso denominado crack (“pedra”) ou merla (“pasta”). Nesse contexto, no primeiro tópico, explana-se um breve histórico sobre as drogas, com enfoque nas espécies do tipo estimulantes, no qual se ressalta os efeitos tóxicos que causam ao organismo dos usuários. A seguir, há relevo sobre os problemas sociais e psicológicos acarretados pelo uso da cocaína em qualquer de suas formas, bem como expõe apontamentos sobre métodos de tratamento
Resumo:
Adolescence has been linked to greater risk-taking and novelty-seeking behavior and a higher prevalence of drug abuse and risk of relapse. Decreases in cyclic adenosine monophosphate response element binding protein (CREB) and phosphorylated CREB (pCREB) have been reported after repeated cocaine administration in animal models. We compared the behavioral effects of cocaine and abstinence in adolescent and adult mice and investigated possible age-related differences in CREB and pCREB levels. Adolescent and adult male Swiss mice received one daily injection of saline or cocaine (10 mg/kg, i.p.) for 8 days. On day 9, the mice received a saline injection to evaluate possible environmental conditioning. After 9 days of withdrawal, the mice were tested in the elevated plus maze to evaluate anxiety-like behavior. Twelve days after the last saline/cocaine injection, the mice received a challenge injection of either cocaine or saline, and locomotor activity was assessed. One hour after the last injection, the brains were extracted, and CREB and pCREB levels were evaluated using Western blot in the prefrontal cortex (PFC) and hippocampus. The cocaine-pretreated mice during adolescence exhibited a greater magnitude of the expression of behavioral sensitization and greater cocaine withdrawal-induced anxiety-like behavior compared with the control group. Significant increases in CREB levels in the PFC and hippocampus and pCREB in the hippocampus were observed in cocaine-abstinent animals compared with the animals treated with cocaine in adulthood. Interestingly, significant negative correlations were observed between cocaine sensitization and CREB levels in both regions. These results suggest that the behavioral and neurochemical consequences of psychoactive substances in a still-developing nervous system can be more severe than in an already mature nervous system
Resumo:
Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.