37 resultados para CD4 T cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor B lymphocyte induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice. In this study, we show that Blimp-1 is required to restrain the production of the inflammatory cytokine IL-17 by Th cells in vivo. Blimp-1CKO mice have greater numbers of IL-17 producing TCR beta(+)CD4(+)cells in lymphoid organs and in the intestinal mucosa. The increase in IL-17 producing cells was not restored to normal levels in wild-type and Blimp-1CKO mixed bone marrow chimeric mice, suggesting an intrinsic role for Blimp-1 in constraining the production of IL-17 in vivo. The observation that Blimp-1 deficient CD4(+) T cells are more prone to differentiate into IL-17(+)/IFN-gamma(+) cells and cause severe colitis when transferred to Rag1-deficient mice provides further evidence that Blimp-1 represses IL-17 production. Analysis of Blimp-1 expression at the single cell level during Th differentiation reveals that Blimp-1 expression is induced in Th1 and Th2 but repressed by TGF-beta in Th17 cells. Collectively, the results described here establish a new role for Blimp-1 in regulating IL-17 production in vivo. The Journal of Immunology, 2012,189: 5682-5693.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-?, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette Guerin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+)) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problem To evaluate CD4+CD25highFoxp3+ cells and IL-6, IL-10, IL-17, and TGF-beta in the peritoneal fluid of women with endometriosis. Method of study A total of ninety-eight patients were studied: endometriosis (n = 70) and control (n = 28). First, peritoneal fluid lymphocytes were isolated, and CD4+CD25high cells were identified using flow cytometry. Then, RT-PCR was performed to verify Foxp3 expression in these cells. Also, IL-6, IL-10, IL-17, and TGF-beta concentration was determined. Results Of all the lymphocytes in the peritoneal fluid of women with endometriosis, 36.5% (median) were CD4+CD25high compared to only 1.15% (median) in the control group (P < 0.001). Foxp3 expression was similarly elevated in patients with the disease compared to those without (median, 50 versus 5; P < 0.001). IL-6 and TGF-beta were higher in endometriosis group (IL-6: 327.5 pg/mL versus 195.5 pg/mL; TGF-beta: 340 pg/mL versus 171.5 pg/mL; both P < 0.001). IL-10 and IL-17 showed no significant differences between the two groups. Conclusion The peritoneal fluid of patients with endometriosis had a higher percentage of CD4+CD25highFoxp3+ cells and also higher levels of IL-6 and TGF-beta compared to women without the disease. These findings suggest that CD4+CD25highFoxp3+ cells may play a role in the pathogenesis of endometriosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathology of relapsing-remitting multiple sclerosis (RR-MS) is largely attributed to activated autoreactive effector T lymphocytes. The influence of microRNAs on the immune response has been shown to occur in different pathways of lymphocyte differentiation and function. Here, the expression of the miRNAs miR-15a/161 in PBMC, CD4(+), and CD8(+) from RR-MS patients has been investigated. BCL2, a known miR-15a/16-1 target, has also been analyzed. The results have shown that miR-15a/16-1 is downregulated in CD4(+) T cells, whereas BCL2 is highly expressed in RR-MS patients only. Our data suggest that miR-15a/16-1 can also modulate the BCL2 gene expression in CD4(+) T cells from RR-MS patients, thereby affecting apoptosis processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: FTY720 modulates CD4(+)T cells by the augmentation of regulatory T cell activity, secretion of suppressive cytokines and suppression of IL-17 secretion by Th17 cells. To further understand the process of graft rejection/acceptance, we evaluated skin allograft survival and associated events after FTY720 treatment. METHODS: F1 mice (C57BL/6xBALB/c) and C57BL/6 mice were used as donors for and recipients of skin transplantation, respectively. The recipients were transplanted and either not treated or treated with FTY720 by gavage for 21 days to evaluate the allograft survival. In another set of experiments, the immunological evaluation was performed five days post-transplantation. The spleens, axillary lymph nodes and skin allografts of the recipient mice were harvested for phenotyping (flow cytometry), gene expression (real-time PCR) and cytokine (Bio-Plex) analysis. RESULTS: The FTY720 treatment significantly increased skin allograft survival, reduced the number of cells in the lymph nodes and decreased the percentage of Tregs at this site in the C57BL/6 recipients. Moreover, the treatment reduced the number of graft-infiltrating cells and the percentage of CD4(+) graft-infiltrating cells. The cytokine analysis (splenocytes) showed decreased levels of IL-10, IL-6 and IL-17 in the FTY720-treated mice. We also observed a decrease in the IL-10, IL-6 and IL-23 mRNA levels, as well as an increase in the IL-27 mRNA levels, in the splenocytes of the treated group. The FTY720-treated mice exhibited increased mRNA levels of IL-10, IL-27 and IL-23 in the skin graft. CONCLUSIONS: Our results demonstrated prolonged but not indefinite skin allograft survival by FTY720 treatment. This finding indicates that the drug did not prevent the imbalance between Tr1 and Th17 cells in the graft that led to rejection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The expression of Langerhans cell (LC) and dermal dendritic cell (dDC) as well as T CD4+ and CD8+ immune responses was evaluated in the skin of BALB/c mice experimentally infected by L. (L.) amazonensis (La) and L. (V.) braziliensis (Lb). At 4th and 8th weeks post infection (PI), skin biopsies were collected to determine the parasite load and CD207+, CD11c+, CD4+, CD8+, iNOS+ cellular densities. Cytokine (IFN-?, IL-4 and IL-10) profiles were also analysed in draining lymph node. At 4th week, the densities of CD207+ and CD11c+ were higher in the La infection, while in the Lb infection, these markers revealed a significant increase at 8th week. At 4th week, CD4+ and CD8+ were higher in the La infection, but at 8th week, there was a substantial increase in both markers in the Lb infection. iNOS+ was higher in the Lb infection at 4th and 8th weeks. In contrast, the parasite load was higher in the La infection at 4th and 8th weeks. The concentration of IFN-? was higher in the Lb infection, but IL-4 and IL-10 were higher in the La infection at 4th and 8th weeks. These results confirm the role of the Leishmania species in the BALB/c mice disease characterized by differences in the expression of dendritic cells and cellular immune response.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The first stages of HIV-1 infection are essential to establish the diversity of virus population within host. It has been suggested that adaptation to host cells and antibody evasion are the leading forces driving HIV evolution at the initial stages of AIDS infection. In order to gain more insights on adaptive HIV-1 evolution, the genetic diversity was evaluated during the infection time in individuals contaminated by the same viral source in an epidemic cluster. Multiple sequences of V3 loop region of the HIV-1 were serially sampled from four individuals: comprising a single blood donor, two blood recipients, and another sexually infected by one of the blood recipients. The diversity of the viral population within each host was analyzed independently in distinct time points during HIV-1 infection. Results: Phylogenetic analysis identified multiple HIV-1 variants transmitted through blood transfusion but the establishing of new infections was initiated by a limited number of viruses. Positive selection (d(N)/d(S)>1) was detected in the viruses within each host in all time points. In the intra-host viruses of the blood donor and of one blood recipient, X4 variants appeared respectively in 1993 and 1989. In both patients X4 variants never reached high frequencies during infection time. The recipient, who X4 variants appeared, developed AIDS but kept narrow and constant immune response against HIV-1 during the infection time. Conclusion: Slowing rates of adaptive evolution and increasing diversity in HIV-1 are consequences of the CD4+ T cells depletion. The dynamic of R5 to X4 shift is not associated with the initial amplitude of humoral immune response or intensity of positive selection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (PciRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Squamous cell carcinoma (SCC) constitutes a microenvironment that could modulate the antitumor immune response. Also, tumor-infiltrating lymphocytes are believed to play complex regulatory roles in antitumor immunity against SCC. The presence of regulatory T cells (Tregs) has been associated with the suppression of tumor-reactive T cells. However, the underlying mechanism for this T cell dysfunction is not clear. We used a multistage model of SCC to examine the role of Treg cells during tumor development. 7,12-dimethylbenz[a]-anthracene/phorbol 12-myristate 13-acetate treatment and systemic depletion of Treg cells using an anti-CD25 monoclonal antibody (PC61) resulted in a decrease in the number and incidence of papilloma. Furthermore, CD25 depletion increased the proportion of CD8(+) and CD4(+) T cells that were isolated from tumor lesions. The levels of interleukin (IL)-1 beta, IL-10, IL-12, IL-13, interferon-gamma, transforming growth factor-beta and tumor necrosis factor-alpha, but not IL-17, were increased in the tumor microenvironment after Treg depletion. Therefore, our results indicated involvement of CD25(+) T cells in SCC development and in the suppression of the inflammatory immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88- dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CD11bhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF- β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR) 4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-gamma) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-gamma response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T-reg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T-reg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-gamma production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-alpha and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T-reg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmania (Viannia) shawi was characterized only recently, and few studies concerning the immunogenic and protective properties of its antigens have been performed. The present study aimed to evaluate the protective potential of the five antigenic fractions isolated from L. (V.) shawi promastigotes in experimental cutaneous leishmaniasis. Soluble antigen from L. (V.) shawi promastigotes was submitted to reverse phase HPLC to purify F1, F2, F3, F4 and F5 antigens. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 mu g protein. After 1 week, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 8 weeks, those same mice were sacrificed and parasite burden as well as the cellular and humoral immune responses were evaluated. F1 and F5-immunized mice restrained lesion progression and parasite load in the skin. However, only the F1 group was able to control the parasitism in lymph nodes, which was associated with low IL-4 and high IFN-gamma production; IgG2a isotype was increased in this group. Immunizations with F2, F3 and F4 antigens did not protect mice. The capability of antigens to restrain IL-4 levels and increase IFN-gamma was associated with protection, such as in immunization using F1 antigen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the role of regulatory T cells (Tregs) during malaria infection has been studied extensively, such studies have focused exclusively on the role of Treg during the blood stage of infection; little is known about the detailed mechanisms of Tregs and sporozoite deposition in the dermis by mosquito bites. In this paper we show that sporozoites introduced into the skin by mosquito bites increase the mobility of skin Tregs and dendritic cells (DCs). We also show differences in MHC class II and/or C086 expression on skin-resident dendritic cell subtypes and macrophages. From the observed decrease of the number of APCs into draining lymph nodes, suppression of CD28 expression in conventional CD4 T cells, and a low homeostatic proliferation of skin-migrated CD4 T found in nude mice indicate that Tregs may play a fundamental role during the initial phase of malaria parasite inoculation into the mammalian host. (C) 2012 Elsevier Inc. All rights reserved.