4 resultados para Amônia
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, São Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with 15N (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha-1 N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha-1 of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
Um reator em batelada, aerado, com biomassa imobilizada de Aspergillus niger AN400 foi operado durante 10 ciclos de 7 dias para remover benzeno (200 mg.L-1), tolueno (200 mg.L-1) e xileno (50 mg.L-1) - BTX - e de nutrientes de meio basal. O reator era alimentado semanalmente com 4 L do meio e glicose - 1 g.L-1, na Fase I, e 0,5 g.L-1, na Fase II. Os BTX foram detectados até o quarto dia de operação, em todos os ciclos. As melhores eficiências médias de remoção foram na Fase I: 75%de matéria orgânica solúvel, 80% de ortofosfato e 77% de amônia. O reator pode ser uma alternativa viável para tratamento de águas poluídas com BTX, porém há a necessidade de estudar o comportamento do reator durante período de operação mais longo e com ciclos reacionais mais curtos, bem como da identificação dos metabólitos produzidos.
Resumo:
Although several studies on ammonia poisoning have been carried out, there is a lack of information on acid-base balance status in ammonia-poisoned cattle. Twelve crossbred steers received intraruminally 0.5 g of urea per kg of body weight in order to induce a clinical picture of ammonia poisoning. Blood samples were collected throughout the trials in order to determine the blood ammonia, lactate, and perform blood gas analysis. All cattle presented a classical clinical picture of ammonia poisoning, with a blood ammonia concentration rising progressively from the beginning until reaching higher values at 180 min (27 ± 3 to 1719 ± 101 μmol L-1), with a similar pattern occurring with blood L-lactate levels (1.7 ± 0.3 to 26.0 ± 1.7 mmol L-1). The higher the blood ammonia concentration the higher the blood L-lactate levels (r = 0.86). All animals developed metabolic acidosis, as blood pH lowered to 7.24 0.03. The steers tried to compensate the metabolic acidosis mainly through the use of blood buffers and respiratory adjustments by lowering the pCO2 levels in the blood to 32.8 ± 2.0 mm Hg.
Resumo:
Aquaporins and Rh proteins can function as gas (CO2 and NH3) channels. The present study explores the urea, H2O, CO2, and NH3 permeability of the human urea transporter B (UT-B) (SLC14A1), expressed in Xenopus oocytes. We monitored urea uptake using [14C]urea and measured osmotic water permeability (Pf) using video microscopy. To obtain a semiquantitative measure of gas permeability, we used microelectrodes to record the maximum transient change in surface pH (∆pHS) caused by exposing oocytes to 5% CO2/33 mM HCO3- (pHS increase) or 0.5 mM NH3/NH4+ (pHS decrease). UT-B expression increased oocyte permeability to urea by >20-fold, and Pf by 8-fold vs. H2O-injected control oocytes. UT-B expression had no effect on the CO2-induced ∆pHS but doubled the NH3-induced ∆pHS. Phloretin reduced UT-B-dependent urea uptake (Jurea * ) by 45%, Pf * by 50%, and (- ∆pHS * )NH3 by 70%. p-Chloromercuribenzene sulfonate reduced Jurea * by 25%, Pf * by 30%, and (∆pHS * )NH3 by 100%. Molecular dynamics (MD) simulations of membrane-embedded models of UT-B identified the monomeric UT-B pores as the main conduction pathway for both H2O and NH3 and characterized the energetics associated with permeation of these species through the channel. Mutating each of two conserved threonines lining the monomeric urea pores reduced H2O and NH3 permeability. Our data confirm that UT-B has significant H2O permeability and for the first time demonstrate significant NH3 permeability. Thus the UTs become the third family of gas channels. Inhibitor and mutagenesis studies and results of MD simulations suggest that NH3 and H2O pass through the three monomeric urea channels in UT-B.