37 resultados para Resonancia Magnética


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo, vamos apresentar o desenvolvimento histórico dos conceitos dos potenciais vetor e quântico formulados, respectivamente, por Maxwell e Bohm. Em suas concepções iniciais, eles foram considerados apenas como um artifício matemático. Contudo, enquanto o potencial vetor já apresenta uma grande evidência experimental (efeito Aharonov-Bohm) sobre a sua interpretação física, o potencial quântico ainda aguarda a sua, muito embora esse efeito e alguns resultados teóricos sinalizem a sua existência física. Este artigo já foi publicado na revista MensAgitat vol.1(2),pp.93- 108(2006) da Academia Roraimense e Paraense de Ciências. Está sendo publicado novamente como e-print no IFUSP para que ele tenha uma divulgação mais ampla e mais ágil pela internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conjugated frustrated phosphane/borane Lewis pairs formed by 1,1-carboboration of a substituted diphenylphosphino acetylene, undergo a synergistic 1,1-addition reaction to n-butyl isocyanide with formation of new B-C and P-C bonds to the former isonitrile carbon atom. Using tert-butyl isocyanide dynamic behaviour between the isocyanide-[B] adduct and the 1,1-addition product formation was observed in solution. The different modes of isocyanide binding to the FLPs in the solid state were characterized using X-ray crystal structure analyses and comprehensive 11B and 31P solid-state magicangle- spinning (MAS-) NMR experiments. The free FLP, the Lewis adduct at the borane group, and the cyclic product resulting from isocyanide addition to both reaction centers, can be differentiated via 11B and 31P isotropic chemical shifts, 11B nuclear electric quadrupole coupling constants, isotropic indirect 11B-31P spin-spin coupling constants, and 11B...31P internuclear distances measured by rotational echo double resonance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Working with nuclear magnetic resonance (NMR) in quadrupolar spin systems, in this paper we transfer the concept of atomic coherent state to the nuclear spin context, where it is referred to as pseudonuclear spin coherent state (pseudo-NSCS). Experimentally, we discuss the initialization of the pseudo- NSCSs and also their quantum control, implemented by polar and azimuthal rotations. Theoretically, we compute the geometric phases acquired by an initial pseudo-NSCS on undergoing three distinct cyclic evolutions: (i) the free evolution of the NMR quadrupolar system and, by analogy with the evolution of the NMR quadrupolar system, that of (ii) single-mode and (iii) two-mode Bose-Einstein Condensate like system. By means of these analogies, we derive, through spin angular momentum operators, results equivalent to those presented in the literature for orbital angular momentum operators. The pseudo-NSCS description is a starting point to introduce the spin squeezed state and quantum metrology into nuclear spin systems of liquid crystal or solid matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Josephson junction model is applied to the experimental implementation of classical bifurcation in a quadrupolar nuclear magnetic resonance system. There are two regimes, one linear and one nonlinear, which are implemented by the radio-frequency and the quadrupolar terms of the Hamiltonian of a spin system, respectively. These terms provide an explanation of the symmetry breaking due to bifurcation. Bifurcation depends on the coexistence of both regimes at the same time in different proportions. The experiment is performed on a lyotropic liquid crystal sample of an ordered ensemble of 133Cs nuclei with spin I = 7/2 at room temperature. Our experimental results confirm that bifurcation happens independently of the spin value and of the physical system. With this experimental spin scenario, we confirm that a quadrupolar nuclei system could be described analogously to a symmetric two-mode Bose-Einstein condensate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na+ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).