21 resultados para concentration response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni. The negative effects of Cd and Ni on S. cerevisiae growth and the mitigating one of sugar cane vinasse were quantified by an exponential model. Without vinasse, the addition of increasing levels of Cd and Ni reduced the specific growth rate, whereas in its presence no reduction was observed. Consistently with the well-proved toxicity of both metals, cell viability and budding rate progressively decreased with increasing their concentration, but in the presence of vinasse the situation was remarkably improved. The trehalose content of S. cerevisiae cells followed the same qualitative behavior as cell viability, even though the negative effect of both metals on this parameter was stronger. These results demonstrate the ability of sugar cane vinasse to mitigate the toxic effects of Cd and Ni.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Soybean oil is rich in omega-6 fatty acids, which are associated with higher incidence and more severe cases of inflammatory bowel diseases. The authors evaluated whether partial replacement of soybean oil by medium-chain triglycerides (MCTs) or olive oil influenced the incidence and severity of experimental ulcerative colitis by using different parenteral lipid emulsions (LEs). Methods: Wistar rats (n = 40) were randomized to receive parenteral infusion of the following LE: 100% soybean oil (SO), 50% MCT mixed with 50% soybean oil (MCT/SO), 80% olive oil mixed with 20% soybean oil (OO/SO), or saline (CC). After 72 hours of infusion, acetic acid experimental colitis was induced. After 24 hours, colon histology and cytokine expression were analyzed. Results: SO was not significantly associated with overall tissue damage. MCT/SO was not associated with necrosis (P < .005), whereas OO/SO had higher frequencies of ulcer and necrosis (P < .005). SO was associated with increased expression of interferon-gamma (P = .005) and OO/SO with increased interleukin (IL)-6 and decreased tumor necrosis factor-alpha expression (P < .05). MCT/SO appeared to decrease IL-1 (P < .05) and increase IL-4 (P < .001) expression. Conclusions: Parenteral SO with high concentration of omega-6 fatty acids was not associated with greater tissue damage in experimental colitis. SO partial replacement with MCT/SO decreased the frequency of histological necrosis and favorably modulated cytokine expression in the colon; however, replacement with OO/SO had unfavorable effects. (JPEN J Parenter Enteral Nutr. 2012; 36: 442-448)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 degrees C for 90 min.(-) Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objective Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. Material and Methods Sixty Wistar rats were randomly divided into three groups (n?=?20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808?nm, tip area of 0.00785?cm2, power 30?mW, application time 47?seconds, fluence 180?J/cm2; 3.8?mW/cm2; and total energy 1.4?J). The animals were sacrificed on the fourth day after injury. Results LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-k beta and COX-2 and by TNF-a and IL-1 beta concentration. Conclusion These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle. Lasers Surg. Med. 44: 726735, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To explore the molecular pathways underlying thiazolidinediones effects on pancreatic islets in conditions mimicking normo- and hyperglycemia, apoptosis rate and transcriptional response to Pioglitazone at both physiological and supraphysiological glucose concentrations were evaluated. Adult rat islets were cultured at physiological (5.6 mM) and supraphysiological (23 mM) glucose concentrations in presence of 10 μM Pioglitazone or vehicle. RNA expression profiling was evaluated with the PancChip 13k cDNA microarray after 24-h, and expression results for some selected genes were validated by qRT-PCR. The effects of Pioglitazone were investigated regarding apoptosis rate after 24-, 48- and 72-h. At 5.6 mM glucose, 101 genes were modulated by Pioglitazone, while 1,235 genes were affected at 23 mM glucose. Gene networks related to lipid metabolism were identified as altered by Pioglitazone at both glucose concentrations. At 23 mM glucose, cell cycle and cell death pathways were significantly regulated as well. At 5.6 mM glucose, Pioglitazone elicited a transient reduction in islets apoptosis rate while at 23 mM, Bcl2 expression was reduced and apoptosis rate was increased by Pioglitazone. Our data demonstrate that the effect of Pioglitazone on gene expression profile and apoptosis rate depends on the glucose concentration. The modulation of genes related to cell death and the increased apoptosis rate observed at supraphysiological glucose concentration raise concerns about Pioglitazone’s direct effects in conditions of hyperglycemia and reinforce the necessity of additional studies designed to evaluate TZDs effects on the preservation of β-cell function in situations where glucotoxicity might be more relevant than lipotoxicity.