43 resultados para Nitric oxide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, it was observed a straight relationship between the manipulation of the reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio, nitric oxide emission and quality and number of early somatic embryos in Araucaria angustifolia, a Brazilian endangered native conifer. In low concentrations GSH (0.01 and 0.1 mM) is a potential NO scavenger in the culture medium. Furthermore, it can increase the number of early SE formed in cell suspension culture media in a few days. However, the maintenance in this low redox state lead to a loss of early somatic embryos polarization. In gelled culture medium, high levels of GSH (5 mM) allows the development of globular embryos presenting a high NO emission on embryo apex, stressing its importance in the differentiation and cell division. Taken together these results indicate that the modification of the embryogenic cultures redox state might be an effective strategy to develop more efficient embryogenic systems in A. angustifolia. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenic mechanisms involved in migraine are complex and not completely clarified. Because there is evidence for the involvement of nitric oxide (NO) in migraine pathophysiology, candidate gene approaches focusing on genes affecting the endothelial function have been studied including the genes encoding endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and vascular endothelial growth factor (VEGF). However, investigations on gene-gene interactions are warranted to better elucidate the genetic basis of migraine. This study aimed at characterizing interactions among nine clinically relevant polymorphisms in eNOS (T-786C/rs2070744, the 27 bp VNTR in intron 4, the Glu298Asp/rs1799983, and two additional tagSNPs rs3918226 and rs743506), iNOS (C(-1026)A/rs2779249 and G2087A/rs2297518), and VEGF (C(-2578)A/rs699947 and G(-634)C/rs2010963) in migraine patients and control group. Genotypes were determined by real-time polymerase chain reaction using the Taqman(A (R)) allele discrimination assays or PCR and fragment separation by electrophoresis in 99 healthy women without migraine (control group) and in 150 women with migraine divided into two groups: 107 with migraine without aura and 43 with aura. The multifactor dimensionality reduction method was used to detect and characterize gene-gene interactions. We found a significant interaction between eNOS rs743506 and iNOS 2087G/A polymorphisms in migraine patients compared to control group (P < 0.05), suggesting that this combination affect the susceptibility to migraine. Further studies are needed to determine the molecular mechanisms explaining this interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C-1026 A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman (R) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P < 0.05). No other significant differences in the alleles or genotypes distributions were found (P > 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C-1026 A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6 h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1 alpha) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitroglycerin (GIN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GIN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GIN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GIN pharmacological action at pharmacologically relevant doses. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficient formation of endogenous nitric oxide (NO) contributes to cardiovascular diseases, and this may be associated with increased circulating levels of matrix metalloproteinase-9 (MMP-9), as previously shown in white subjects. Because interethnic differences exist with respect to risk factors, prevalence, and severity of cardiovascular diseases, we designed this study to examine whether the circulating levels of nitrites (a marker of endogenous NO formation) are associated with the plasma levels of MMP-9 and MMP-2 in healthy black subjects. We studied 198 healthy subjects self-reported as blacks not taking any medications. Venous blood samples were collected and plasma and whole blood nitrite levels were measured using an ozone-based chemiluminescence assay. Plasma MMP-2 and MMP-9 levels were determined by gelatin zymography. We found a positive correlation between plasma MMP-9 and MMP-2 levels (P < 0.0001, rs = 0.556). Interestingly, we found a negative relationship between the plasma MMP-9 levels and the plasma or whole blood nitrites levels (P = 0.04, rs = -0.149; and P < 0.0001, rs = -0.349, respectively). In parallel, we found similar negative relationships between plasma MMP-2 levels and plasma or whole blood nitrites levels (P = 0.02, rs = -0.172; and P < 0.0001, rs = -0.454, respectively). This is the first study to show that endogenous nitric oxide formation correlates negatively with the circulating levels of both MMP-2 and MMP-9 in black subjects. Our findings suggest a mechanistic link between deficient NO formation and increased MMPs levels, which may promote cardiovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 mu g/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 mu g/kg was >35 mu g/kg. The injection of the nonselective NO-synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with L-NAME (non selective NOS inhibitor, 100 mu mol/L), 7-nitroindazole (selective nNOS inhibitor, 100 mu mol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, I mu mol/L), glibenclamide (selective blocker of ATP-sensitive K+ channels, 3 mu mol/L) and 4-aminopyridine (selective blocker of voltage-dependent K+ channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O-2(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H2O2) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 mu mol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 mu mol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by L-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca2+ concentration ([Ca2+]c), O-2(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca-2]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: We tested the effects of liver reperfusion in the immunohistochemical expression of nitric oxide synthase on the thoracic aorta and the heart. Materials and Methods: We randomized 24 male Wistar rats into 3 groups: (1) control; (2) R2 group, with 60 minutes of partial (70%) liver ischemia and 2 hours of global liver reperfusion; (3) and R6 group, with 60 minutes of partial liver ischemia and 6 hours of global liver reperfusion. Results: In the heart, there was little, diffuse immunohistochemical endothelial staining; immunohistochemical inducible nitric oxide synthase staining was expressed in the adventitia layer of intramyocardial vessels in both cases, with a time-dependent but not statistically significant increase. In the thoracic aorta, a time-dependent decrease in endothelial nitric oxide synthase expression in the muscular layer after reperfusion, which was statistically significant in R6 versus the control. Positive immunostaining for inducible nitric oxide synthase was seen in the muscular and endothelial layers, and this varied from moderate in the control group, to light in the endothelium in groups R2 and R6. Conclusions: We observed changes that may be implicated in heart injury and impairment of aortal tone after liver ischemia and reperfusion injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The effects of longterm ethanol consumption on the levels of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS) and metalloproteinase-2 (MMP-2) were studied in rat kidney. Methods Male Wistar rats were treated with 20% ethanol (v/v) for 6 weeks. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of eNOS and iNOS were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. MMP-2 activity was determined by gelatin zymography. Histopathological changes in kidneys and indices of renal function (creatinine and urea) and tissue injury (mitochondrial respiration) were also investigated. Results Chronic ethanol consumption did not alter malondialdehyde levels in the kidney. Ethanol consumption induced a significant increase in renal nitrite and nitrate levels. Treatment with ethanol increased mRNA expression of both eNOS and iNOS. Immunohistochemical assays showed increased immunostaining for eNOS and iNOS after treatment with ethanol. Kidneys from ethanol-treated rats showed increased activity of MMP-2. Histopathological investigation of kidneys from ethanol-treated animals revealed tubular necrosis. Indices of renal function and tissue injury were not altered in ethanol-treated rats. Conclusions Ethanol consumption increased renal metalloproteinase expression/activity, which was accompanied by histopathological changes in the kidney and elevated NO generation. Since iNOS-derived NO and MMPs contribute to progressive renal injury, the increased levels of NO and MMPs observed in ethanol-treated rats might contribute to progressive renal damage.