3 resultados para Grafo

em Repositorio Institucional de la Universidad de Málaga


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se han desarrollado cuatro mejoras en los proyectos de simulación de flujo de tráfico en tiempo acelerado. Los proyectos [1] y [2] realizan una simulación de flujo de tráfico en un CAS, Maxima, y usan Java, para realizar la GUI. Ambos usan Jacomax para realizar la comunicación Java-Maxima. La primera ha sido implementar un algoritmo Dijkstra difuso en [2] que simule (de forma más real que el algoritmo Dijkstra), el camino que sigue un vehículo entre un origen y un destino, dentro de un mapa (un grafo) que representa una zona de Málaga. Además, se ha personalizado el grafo inicial asociando uno ponderado a cada vehículo, en el cual, las aristas (las calles) tienen un peso calculado con una uniforme o una normal. Para ganar en rendimiento en [1] y [2], se ha permitido al usuario decidir cada cuantos pasos en Maxima se comunica con Java, eliminando así muchas comunicaciones que resultaban lentas. Además, se ha creado un programa con Java, el cual crea un paquete Maxima con las funciones de distribución, densidad, masa, variables aleatorias, que el usuario desee, dando la posibilidad de elegir entre las más usuales ya implementadas. Este paquete puede ser cargado en [1] y [2] permitiendo al usuario elegir la función de distribución que más se asemeje al fenómeno que se desea simular. La última ha sido conseguir que funcionen los proyectos [1] y [2] en una máquina Mac.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El destacado volumen de negocio a nivel mundial ha convertido a los videojuegos en el principal protagonista dentro de la industria del entretenimiento. Este hecho no ha pasado desapercibido para la comunidad científica, que se ha visto surtida de nuevos retos y desafíos que abordar. La generación automática de contenido son un conjunto de técnicas que permiten generar de forma algorítmica contenido específico para videojuegos. Estas técnicas reducen costes de producción y diseño, sirven como fuente de creatividad e inspiración para el diseñador, ahorran recursos computacionales a la hora de ejecutar el juego y permiten adaptar el juego al jugador para que la experiencia de juego sea única y personalizada. Generalmente el criterio usado para la generación es el de la jugabilidad, es decir, que el contenido cumpla con las reglas del juego. Esta tesis define una metodología para la generación automática de contenido para juegos de estrategia en tiempo real en base a unos criterios que van más allá de que el contenido sea válido. Esta metodología propone el uso de algoritmos evolutivos para la generación del contenido siguiendo un esquema de generación y prueba. La primera característica exigible al contenido generado que se ha estudiado ha sido el equilibrio entre jugadores. También se ha descrito un método de generación enfocado en esta característica que es capaz de crear mapas que no proporcionan ventaja alguna a los jugadores, independientemente de su habilidad o estrategia elegida. Otra característica deseable que evita que las partidas se conviertan en algo aburrido y monótono y que también ha sido estudiada es el dinamismo. A la hora de buscar el dinamismo se ha optado por dos enfoques distintos, uno basado en los recursos que mantienen los jugadores a lo largo de la partida y otro basado en las confrontaciones entre ellos, que se centra en las batallas y el nivel de naves perdidas. Se han analizado ambas características en conjunto, detectándose que la definición de dinamismo que se ha usado como objetivo de la optimización incluye implícitamente una componente de equilibrio, concluyéndose por tanto que el equilibrio es compatible con un nivel medio de dinamismo. Además, se ha estudiado un enfoque multi-objetivo del problema que ha sacado a la luz otras relaciones entre equilibrio y dinamismo y mediante el cual se ha establecido que conforme aumenta el equilibrio se produce un leve descenso en el dinamismo, acabando con un descenso brusco en la frontera superior del equilibrio. Al igual que con el equilibrio y el dinamismo, se ha abordado el problema de mejorar la estética de los mapas siguiendo dos enfoques, uno geométrico que se basan en la geométrica espacial del mapa (coordinadas y distancias), y otro topológico que se basan en propiedades cualitativas de los mapas que no se ven afectadas por transformaciones geométricas simples y que han sido obtenidas a partir del grafo de esferas de influencia. Los resultados indican que existe una relación lineal entre la diferencia con los mapas estéticos y con los que no lo son, lo que da una idea de la densidad del espacio de búsqueda. Con respecto a las medidas utilizadas, se observa que hay algunas de ellas que tienen una mayor influencia sobre el valor de aptitud que el resto de variables. Por último, tras realizar un análisis cruzado de las soluciones obtenidas con ambos enfoques se observa que ambos enfoques son capaces de generar mapas adecuados, aunque hay que destacar que existe una mayor diversidad en las soluciones del enfoque geométrico que en las del topológico, además de que las soluciones geométricas obtenidas quedan más cerca del conjunto de mapas estéticos que las propias soluciones topológicas según la medida de aptitud de éstas últimas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La autoorganización es un proceso de aprendizaje no supervisado mediante el cual se descubren características, relaciones, patrones significativos o prototipos en los datos. Entre los sistemas neuronales autoorganizados más usados destaca el el mapa autoorganizado o SOM (Self-Organizing Map), el cual ha sido aplicado en multitud de campos distintos. Sin embargo, este modelo autoorganizado tiene varias limitaciones relacionadas con su tamaño, topología, falta de representación de relaciones jerárquicas, etc. La red neuronal llamada gas neuronal creciente o GNG (Growing Neural Gas), es un ejemplo de modelo neuronal autoorganizado con mayor flexibilidad que el SOM ya que está basado en un grafo de unidades de proceso en vez de en una topología fija. A pesar de su éxito, se ha prestado poca atención a su extensión jerárquica, a diferencia de muchos otros modelos que tienen varias versiones jerárquicas. El gas neuronal jerárquico creciente o GHNG (Growing Hierarchical Neural Gas) es una extensión jerárquica del GNG en el que se aprende un árbol de grafos, donde el algoritmo original del GNG se ha mejorado distinguiendo entre una fase de crecimiento y una fase de convergencia. Los resultados experimentales demuestran las capacidades de autoorganización y aprendizaje jerárquico de esta red.