2 resultados para Arquitetura

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a low cost architecture for development of synchronized phasor measurement units (PMU). The device is intended to be connected in the low voltage grid, which allows the monitoring of transmission and distribution networks. Developments of this project include a complete PMU, with instrumentation module for use in low voltage network, GPS module to provide the sync signal and time stamp for the measures, processing unit with the acquisition system, phasor estimation and formatting data according to the standard and finally, communication module for data transmission. For the development and evaluation of the performance of this PMU, it was developed a set of applications in LabVIEW environment with specific features that let analyze the behavior of the measures and identify the sources of error of the PMU, as well as to apply all the tests proposed by the standard. The first application, useful for the development of instrumentation, consists of a function generator integrated with an oscilloscope, which allows the generation and acquisition of signals synchronously, in addition to the handling of samples. The second and main, is the test platform, with capabality of generating all tests provided by the synchronized phasor measurement standard IEEE C37.118.1, allowing store data or make the analysis of the measurements in real time. Finally, a third application was developed to evaluate the results of the tests and generate calibration curves to adjust the PMU. The results include all the tests proposed by synchrophasors standard and an additional test that evaluates the impact of noise. Moreover, through two prototypes connected to the electrical installation of consumers in same distribution circuit, it was obtained monitoring records that allowed the identification of loads in consumer and power quality analysis, beyond the event detection at the distribution and transmission levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of non-linear loads at a point in the distribution system may deform voltage waveform due to the consumption of non-sinusoidal currents. The use of active power filters allows significant reduction of the harmonic content in the supply current. However, the processing of digital control structures for these filters may require high performance hardware, particularly for reference currents calculation. This work describes the development of hardware structures with high processing capability for application in active power filters. In this sense, it considers an architecture that allows parallel processing using programmable logic devices. The developed structure uses a hybrid model using a DSP and an FPGA. The DSP is used for the acquisition of current and voltage signals, calculation of fundamental current related controllers and PWM generation. The FPGA is used for intensive signal processing, such as the harmonic compensators. In this way, from the experimental analysis, significant reductions of the processing time are achieved when compared to traditional approaches using only DSP. The experimental results validate the designed structure and these results are compared with other ones from architectures reported in the literature.