2 resultados para biochemical and ultrastructural changes

em Repositório Institucional da Universidade Federal do Rio Grande - FURG


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to study the convective drying of anchovy (Engraulis anchoita) fillets and to evaluate the final product characteristics through its biochemical and functional properties. The drying temperatures were of 50, 60 and 70°C, and the fillet samples were dried with the skins down (with air flow one or the two sides) and skins up (with air flow one side). The drying experimental data were analyzed by Henderson–Pabis model, which showed a good fit (R2 > 0.99 and REQM < 0.05). The moisture effective diffusivity values ranged from 4.1 10–10 to 8.6 10–10 m2 s−1 with the skin down and 2.2 10–10 to 5.5 10–10 m2 s−1 with the skin up, and the activation energy values were 32.2 and 38.4 kJ mol−1, respectively. The product characteristics were significantly affected (p < 0.05) by drying operation conditions. The lower change was in drying at 60°C with air flow for two sides of the samples and skin up. In this condition, the product showed solubility 22.3%; in vitro digestibility 87.4%; contents of available lysine and methionine 7.21 and 2.64 g 100 g−1, respectively; TBA value 1.16 mgMDA kg−1; specific antioxidant activity was 1.91 mMDPPH g−1 min−1, and variation total color was 10.72.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal and interannual changes (1993e2012) of water temperature and transparency, river discharge, salinity, water quality properties, chlorophyll a (chl-a) and the carbon biomass of the main taxonomical phytoplankton groups were evaluated at a shallow station (~2 m) in the subtropical Patos Lagoon Estuary (PLE), Brazil. Large variations in salinity (0e35), due to a complex balance between Patos Lagoon outflow and oceanic inflows, affected significantly other water quality variables and phytoplankton dynamics, masking seasonal and interannual variability. Therefore, salinity effect was filtered out by means of a Generalized Additive Model (GAM). River discharge and salinity had a significant negative relation, with river discharge being highest and salinity lowest during July to October. Diatoms comprised the dominant phytoplankton group, contributing substantially to the seasonal cycle of chl-a showing higher values in austral spring/summer (September to April) and lowest in autumn/winter (May to August). PLE is a nutrient-rich estuary and the phytoplankton seasonal cycle was largely driven by light availability, with few exceptions in winter. Most variables exhibited large interannual variability. When varying salinity effect was accounted for, chl-a concentration and diatom biomass showed less irregularity over time, and significant increasing trends emerged for dinoflagellates and cyanobacteria. Long-term changes in phytoplankton and water quality were strongly related to variations in salinity, largely driven by freshwater discharge influenced by climatic variability, most pronounced for ENSO events. However, the significant increasing trend of the N:P ratio indicates that important environmental changes related to anthropogenic effects are undergoing, in addition to the hydrology in the PLE.