3 resultados para aromatic alcohols

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intra-diffusion coefficients of three fluorinated alcohols, 2,2,3,3,3-pentafluoropropan-1-ol (PFP), 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFB) and 2,2,3,3,4,4,5,5,5-nonafluoropentan-1-ol (NFP) in water have been measured by the PFG–NMR spin-echo technique as a function of temperature and composition, focusing on the alcohol dilute region. For comparison, intra-diffusion coefficients of 2,2,2- trifluoroethanol (TFE) and HFB have also been measured in heavy water using the same method and conditions. As far as we know, these are the first experimental measurements of this property for these binary systems. Intra-diffusion coefficients for NFP in water and for TFE and HFB in heavy water have also been obtained by molecular dynamics simulation, complementing those for TFE, PFP and HFB reported in a previous work. The agreement between experimental and simulated results for PFP, HFB and NFP in water is reasonable, although presenting higher deviations than for the TFE/water system. From the dependence of the intra-diffusion coefficients on temperature, diffusion activation energies were estimated for all the solutes in water and heavy water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports a combined thermodynamic, spectroscopic, and computational study on the interactions and structure of binary mixtures of hydrogenated and fluorinated substances that simultaneously interact through strong hydrogen bonding. Four binary mixtures of hydrogenated and fluorinated alcohols have been studied, namely, (ethanol + 2,2,2-trifluoroethanol (TFE)), (ethanol + 2,2,3,3,4,4,4-heptafluoro-1-butanol), (1-butanol (BuOH) + TFE), and (BuOH + 2,2,3,3,4,4,4-heptafluoro-1-butanol). Excess molar volumes and vibrational spectra of all four binary mixtures have been measured as a function of composition at 298 K, and molecular dynamics simulations have been performed. The systems display a complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The combined analysis of the results from different approaches indicates that this results from a balance between preferential hydrogen bonding between the hydrogenated and fluorinated alcohols and the unfavorable dispersion forces between the hydrogenated and fluorinated chains. As the chain length increases, the contribution of dispersion increases and overcomes the contribution of H-bonds. In terms of the liquid structure, the simulations suggest the possibility of segregation between the hydrogenated and fluorinated segments, a hypothesis corroborated by the spectroscopic results. Furthermore, a quantitative analysis of the infrared spectra reveals that the presence of fluorinated groups induces conformational changes in the hydrogenated chains from the usually preferred all-trans to more globular arrangements involving gauche conformations. Conformational rearrangements at the CCOH dihedral angle upon mixing are also disclosed by the spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vapor pressure of four liquid 1H,1H-perfluoroalcohols (CF3(CF2)n(CH2)OH, n ¼ 1, 2, 3, 4), often called odd-fluorotelomer alcohols, was measured as a function of temperature between 278 K and 328 K. Liquid densities were also measured for a temperature range between 278 K and 353 K. Molar enthalpies of vaporization were calculated from the experimental data. The results are compared with data from the literature for other perfluoroalcohols as well as with the equivalent hydrogenated alcohols. The results were modeled and interpreted using molecular dynamics simulations and the GC-SAFT-VR equation of state.