4 resultados para Taxonomic key for tadpoles

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genus Bursaphelenchus includes B. xylophilus (Steiner et Buhrer, 1934) Nickle, 1981, which is of world economic and quarantine importance. Distinction among several species of the pinewood nematodes species complex (PWNSC) is often difficult. Besides standard morphology, morphometrics and molecular biology, new tools are welcome to better understand this group. The computerized (or e-) key of this genus, presented in this communication, includes 74 species (complete list of valid species of the world fauna) and 35 characters, that were used by the taxonomic experts of this group, in the original descriptions. Morphology of sex organs (male spicules and female vulval region) was digitized and classified to distinguish alternative types. Several qualitative characters with overlapping character states (expressions) were transformed into the morphometric indices with the discontinuous ranges (characters of ratios of the spicule dimensions). Characters and their states (expressions) were illustrated in detail and supplied by brief user-friendly comments. E-key was created in the BIKEY identification system (Dianov & Lobanov, 1996-2004). The system has built-algorithm ranging characters depending on their diagnostic values at each step of identification. Matrix of species and the character states (structural part of the e-key database) may be easily transformed using statistical packages into the dendrograms of general phenetic similarities (UPGMA, standard distance: mean character difference). It may be useful in the detailed analysis of taxonomy and evolution of the genus and in its splitting to the species groups based on morphology. The verification of the dendrogram using the information on the species links with insect vectors and their associated plants, provided an opportunity to recognize the five clusters (xylophilus, hunti, eremus sensu stricto, tusciae and piniperdae sensu stricto), which seem to be the natural species groups. The hypothesis about the origin and the first stages of the genus evolution is proposed. A general review of the genus Bursaphelenchus is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Order Aphelenchida contains several genera of economic importance, namely Aphelenchoides and Bursaphelenchus. Nematode species belonging to these 2 genera frequently co-habit with other genera such as Laimaphelenchus. It is therefore important to clearly distinguish them, as well as understand the group´s biodiversity. A computerized, or e-key, for the genus Laimaphelenchus Fuchs has been developed in the BiKey Identification system (Dianov & Lobanov, 1996-2004). The e-key includes 14 species and 34 characters (from 2 to 6 character states each). It also includes the built-in algorithm ranging characters according their diagnostic values to minimize the number of the diagnosis steps (average number of steps is 2.7; values are re-calculated at each step). The most important characters (as calculated by BiKey) are: length of posterior branch of the female genital system; excretory pore position; vulval anterior flap shape; number pairs of mail tale papillae; male bursa shape (ventral view); number of tail tip setae in female; female tail tip stub shape; presence of mucro on tail tip in male. Key is pictorial (image-operating), multientry, as other BiKey products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 75 valid species of the genus Bursaphelenchus are listed together with their synonyms. Diagnostic characters and their states are discussed and illustrated. Tabular and traditional text keys are provided for the genus. Two new subspecies are proposed to distinguish populations of B. piniperdae and B. poligraphi, as described by Rühm (1956), from the original descriptions of these species published by Fuchs (1937). Known records of Bursaphelenchus species with their associated natural vectors, plants and plant families are given. Dendrograms of species relationships (UPGMA, standard distance: mean character difference) based on combined taxonomic characters and also on spicule characters only, are provided. Discussion as to whether the species groups are natural or artificial (and therefore purely diagnostic) is based on their relationships in the dendrogram and the vector and associated plant ranges of the species. Of the six species groups distinguished, two appear to represent natural assemblages, these being the xylophilus-group (with ten species) and the hunti-group (seven species), of which two, B. cocophilus and B. dongguanensis, form the cocophilus-cluster which is separated on the dendrogram from the main clusters. The remaining four species groups appear to be artificial and purely diagnostic in function, namely the aberrans-group (four species); the eidmanni-group (six species); the borealis-group (five species), and the piniperdae-group (43 species). Two new subspecies, both in the piniperdae-group, viz. B. piniperdae ruehmpiniperdae n. subsp. and B. poligraphi ruehmpoligraphi n. subsp., are proposed and diagnosed from B. piniperdae piniperdae and B. poligraphi poligraphi the respective type subspecies. Bursaphelenchus dongguanensis is regarded as being a valid member of the genus and its transfer to Parasitaphelenchus is rejected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nematodes are the most abundant metazoans, comprising more than 80% of all animals alive today. Since 1743, when Needham (Needham, 1743) described the first nematode, approximately 20,000 - 30,000 species have been named, with estimates of species remaining to be described ranging from 100,000 to 1 million (Blaxter, 2004; De Ley, 2000). Unfortunately, the taxonomic community is woefully inadequate for this task. The number of taxonomists currently describing new species of nematodes around the world is less than 100, and significant increases are not expected. If each of these taxonomists were able to describe 10 new species every year, it would take between 100 to 1,000 years to name these yet to be described species.