4 resultados para FREE-LIVING STAGES

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhizobia are important soil bacteria due to their ability to establish nitrogen-fixing symbioses with legume plants. In this dual lifestyle, as free-living bacteria or as plant symbiont, rhizobia are often exposed to different environmental stresses. The present chapter overviews the current knowledge on the heat shock response of rhizobia, highlighting how these large genome bacteria respond to heat from a transcriptional point of view. Response to heat shock in rhizobia involves genome wide changes in the transcriptome that may affect more than 30% of the genome and involve all replicons. In addition to the expected upregulation of genes already known to be involved in stress response (dnaK, groEL, ibpA, clpB), the reports on the heat shock response in rhizobia also showed particular aspects of stress response in these resourceful bacteria. The transcriptional response to heat in rhizobia includes the overexpression of a large number of genes involved in transcription and carbohydrate transport and metabolism. Additional studies are needed in order to better understand the transcriptional regulation of stress response in bacteria with large genomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Europe, the concerns with the status of marine ecosystems have increased, and the Marine Directive has as main goal the achievement of Good Environmental Status (GES) of EU marine waters by 2020. Molecular tools are seen as promising and emerging approaches to improve ecosystem monitoring, and have led ecology into a new era, representing perhaps the most source of innovation in marine monitoring techniques. Benthic nematodes are considered ideal organisms to be used as biological indicator of natural and anthropogenic disturbances in aquatic ecosystems underpinning monitoring programmes on the ecological quality of marine ecosystems, very useful to assess the GES of the marine environment. dT-RFLP (directed Terminal-Restriction Fragment Length Polymorphism) allows to assess the diversity of nematode communities, but also allows studying the functioning of the ecosystem, and combined with relative real-time PCR (qPCR), provides a high-throughput semi-quantitative characterization of nematode communities. These characteristics make the two molecular tools good descriptors for the good environmental status assessment. The main aim of this study is to develop and optimize the dT-RFLP and qPCR in Mira estuary (SW coast, Portugal). A molecular phylogenetic analysis of marine and estuarine nematodes is being performed combining morphological and molecular analysis to evaluate the diversity of free-living marine nematodes in Mira estuary. After morphological identification, barcoding of 18S rDNA and COI genes are being determined for each nematode species morphologically identified. So far we generated 40 new sequences belonging to 32 different genus and 17 families, and the study has shown a good degree of concordance between traditional morphology-based identification and DNA sequences. These results will improve the assessment of marine nematode diversity and contribute to a more robust nematode taxonomy. The DNA sequences are being used to develop the dT-RFLP with the ability to easily process large sample numbers (hundreds and thousands), rather than typical of classical taxonomic or low throughput molecular analyses. A preliminary study showed that the digest enzymes used in dT-RFLP for terrestrial assemblages separated poorly the marine nematodes at taxonomic level for functional group analysis. A new digest combination was designed using the software tool DRAT (Directed Terminal Restriction Analysis Tool) to distinguished marine nematode taxa. Several solutions were provided by DRAT and tested empirically to select the solution that cuts most efficiently. A combination of three enzymes and a single digest showed to be the best solution to separate the different clusters. Parallel to this, another tool is being developed to estimate the population size (qPCR). An improvement in qPCR estimation of gene copy number using an artificial reference is being performed for marine nematodes communities to quantify the abundance. Once developed, it is proposed to validate both methodologies by determining the spatial and temporal variability of benthic nematodes assemblages across different environments. The application of these high-throughput molecular approaches for benthic nematodes will improve sample throughput and their implementation more efficient and faster as indicator of ecological status of marine ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2008, the stable seagrass beds of the Mira estuary (SW Portugal) disappeared completely; however, during 2009, they have begun to present early symptoms of natural recovery, characterised by a strongly heterogeneous distribution. This study was designed to investigate the spatial and temporal variability patterns of species composition, densities and trophic composition of the benthic nematode assemblages in this early recovery process, at two sampling sites with three stations each and at five sampling occasions. Because of the erratic and highly patchy seagrass recovery and the high environmental similarity of the two sampling sites, we expected within-site variability in nematode assemblages to exceed between-site variability. However, contrary to that expectation, whilst nematode genus composition was broadly similar between sites, nematode densities differed significantly between sites, and this between-site variability exceeded within-site variability. This may be linked to differences in the Zostera recovery patterns between both sites. In addition, no clear temporal patterns of nematode density, trophic composition and diversity were evident.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil salinity affects rhizobia both as free-living bacteria and in symbiosis with the host. The aim of this study was to examine the transcriptional response of the Lotus microsymbiont Mesorhizobium loti MAFF303099 to salt shock. Changes in the transcriptome of bacterial cells subjected to a salt shock of 10% NaCl for 30 min were analyzed. From a total of 7231 protein-coding genes, 385 were found to be differentially expressed upon salt shock, among which 272 were overexpressed. Although a large number of overexpressed genes encode hypothetical proteins, the two most frequently represented COG categories are "defense mechanisms" and "nucleotide transport and metabolism". A significant number of transcriptional regulators and ABC transporters genes were upregulated. Chemotaxis and motility genes were not differentially expressed. Moreover, most genes previously reported to be involved in salt tolerance were not differentially expressed. The transcriptional response to salt shock of a rhizobium with low ability to grow under salinity conditions, but enduring a salinity shock, may enlighten us concerning salinity stress response mechanisms.