1 resultado para TOMATO GENOTYPES

em Biblioteca de Teses e Dissertações da USP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micronutrient selenium is essential to human physiology. As the amino acid selenocysteine, it is inserted into selenoproteins with a wide range of functions including antioxidant capacity, thyroid hormone metabolism, improvement of immune system, brain function, fertility and reproduction. Low selenium status has been associated with increased risk for chronic diseases, such as cancer, type-2 diabetes and cardiovascular disease. In this context, several studies have been conducted in order to investigate if selenium supplementation could reduce the risk of such diseases. However, genetic variations may interfere in the response of individuals to a dietary intervention and must be considered as a important source of inter-individual variation. Therefore, this study was conducted was conducted to investigate the influence of genetic variations in selenoproteins genes on the response to an intervention with Brazil nuts, the richest source of selenium known in nature. The study included 130 healthy volunteers with both genders, aged 20 to 60 years old selected in University of São Paulo. They received nuts for 8 weeks, eating one nut a day, and did a washout period for more 8 weeks. All volunteers had a blood sampling collection every 4 weeks during 4 months, in a total of 5. The following analysis were done: anthropometric measurements, lipid profile, plasma malondialdehyde, plasma and erythrocyte Se, selenoprotein P, plasma and erythrocyte GPx activity, gene expression of GPX1, SEPP1, SELS and SEP15. The volunteers were also genotyped for SNPs rs1050450, rs3811699, rs1800699, rs713041, rs3877899, rs7579, rs34713741 and rs5845. Each unit of Brazil nut provided an average of 300 µg of selenium. All 130 volunteers completed the protocol. The concentrations of total cholesterol and glucose decreased after 8 weeks of supplementation. Moreover, HDL concentrations were higher for carriers of the variant T allele for GPX4_rs713041. The frequencies of the variant genotypes were 5,4% for rs1050450, rs3811699 e rs1088668, 10% for rs3877899, 19,2% for rs713041 e rs7579, 11,5% for rs5845 and 8,5% for rs34713741. The levels of the five biomarkers increased significantly after supplementation. In addition, erythrocyte GPx activity was influenced by rs1050450, rs713041 and rs5845; erythrocyte selenium was influenced by rs5845 and plasma selenium by rs3877899. Gene expression of GPX1, SEPP1 and SEP15 were higher after supplementation. The SNP rs1050450 influenced GPX1 mRNA expression and rs7579 influenced SEPP1 mRNA expression. Therefore, it can be concluded that the supplementation with one of Brazil nut for 8 weeks was efficient to reduce total cholesterol and glucose levels and to increase the concentrations of the main biomarkers of selenium status in healthy adults. Furthermore, our results suggest that GPX4_rs713041 might interfere on HDL concentrations and GPx1 activity, GPX1_rs1050450 might interfere on GPx1 activity, SEP15_rs5845 might interfere on GPx1 activity and erythrocyte selenium and SEPP1_3877899 might interfere on plasma Se levels. Therefore, the effect of genetic variations should be considered in future nutritional interventions evaluating the response to Brazil nut supplementation.