81 resultados para lymphocyte
em Queensland University of Technology - ePrints Archive
Resumo:
Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 × 10−28). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 × 10−14). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 × 10−9) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.
Resumo:
The CDKN2A gene encodes p16 (CDKN2A), a cell-cycle inhibitor protein which prevents inappropriate cell cycling and, hence, proliferation. Germ-line mutations in CDKN2A predispose to the familial atypical multiple-mole melanoma (FAMMM) syndrome but also have been seen in rare families in which only 1 or 2 individuals are affected by cutaneous malignant melanoma (CMM). We therefore sequenced exons 1alpha and 2 of CDKN2A using lymphocyte DNA isolated from index cases from 67 families with cancers at multiple sites, where the patterns of cancer did not resemble those attributable to known genes such as hMLH1, hMLH2, BRCA1, BRCA2, TP53 or other cancer susceptibility genes. We found one mutation, a mis-sense mutation resulting in a methionine to isoleucine change at codon 53 (M531) of exon 2. The individual tested had developed 2 CMMs but had no dysplastic nevi and lacked a family history of dysplastic nevi or CMM. Other family members had been diagnosed with oral cancer (2 persons), bladder cancer (1 person) and possibly gall-bladder cancer. While this mutation has been reported in Australian and North American melanoma kindreds, we did not observe it in 618 chromosomes from Scottish and Canadian controls. Functional studies revealed that the CDKN2A variant carrying the M531 change was unable to bind effectively to CDK4, showing that this mutation is of pathological significance. Our results have confirmed that CDKN2A mutations are not limited to FAMMM kindreds but also demonstrate that multi-site cancer families without melanoma are very unlikely to contain CDKN2A mutations.
Resumo:
Introduction—Human herpesvirus 8 (HHV8) is necessary for Kaposi sarcoma (KS) to develop, but whether peripheral blood viral load is a marker of KS burden (total number of KS lesions), KS progression (the rate of eruption of new KS lesions), or both is unclear. We investigated these relationships in persons with AIDS. Methods—Newly diagnosed patients with AIDS-related KS attending Mulago Hospital, in Kampala, Uganda, were assessed for KS burden and progression by questionnaire and medical examination. Venous blood samples were taken for HHV8 load measurements by PCR. Associations were examined with odds ratio (OR) and 95% confidence intervals (CI) from logistic regression models and with t-tests. Results—Among 74 patients (59% men), median age was 34.5 years (interquartile range [IQR], 28.5-41). HHV8 DNA was detected in 93% and quantified in 77% patients. Median virus load was 3.8 logs10/106 peripheral blood cells (IQR 3.4-5.0) and was higher in men than women (4.4 vs. 3.8 logs; p=0.04), in patients with faster (>20 lesions per year) than slower rate of KS lesion eruption (4.5 vs. 3.6 logs; p<0.001), and higher, but not significantly, among patients with more (>median [20] KS lesions) than fewer KS lesions (4.4 vs. 4.0 logs; p=0.16). HHV8 load was unrelated to CD4 lymphocyte count (p=0.23). Conclusions—We show significant association of HHV8 load in peripheral blood with rate of eruption of KS lesions, but not with total lesion count. Our results suggest that viral load increases concurrently with development of new KS lesions.
Resumo:
In persons with HIV/AIDS (PWHAs), Hodgkin lymphoma (HL) risk is increased. However, HL incidence in PWHAs has unexpectedly increased since highly active antiretroviral therapy (HAART) was introduced. We linked nationwide HIV/AIDS and cancer registry data from 1980 through 2002. Immunity was assessed by CD4 T-lymphocyte counts at AIDS onset. Annual HL incidence rates were calculated for 4 through 27 months after AIDS onset. During 477 368 person years (py's) of follow-up in 317 428 persons with AIDS (PWAs), 173 HL cases occurred (36.2 per 105 py's). Incidence was significantly higher in 1996 to 2002 than earlier. Incidence in PWAs with 150 to 199 CD4 cells/μL was 53.7 per 105 py's, whereas in PWAs with fewer than 50 CD4 cells/μL, it was 20.7 per 105 py's (Ptrend = .002). For each HL subtype, incidence decreased with declining CD4 counts, but nodular sclerosing decreased more precipitously than mixed cellularity, thereby increasing the proportion of mixed cellularity HL seen in PWAs. We conclude that HL incidence is lower with severe immunosuppression than with moderate immunosuppression, and HAART-related improvements in CD4 counts likely explain the increasing HL incidence in PWHAS observed since 1996. With more severe immunosuppression, nodular sclerosing HL becomes infrequent, explaining the higher proportion of mixed cellularity HL found in PWAs. Pathogenesis implications are discussed.
Resumo:
The immune system plays an important role in defending the body against tumours and other threats. Currently, mechanisms involved in immune system interactions with tumour cells are not fully understood. Here we develop a mathematical tool that can be used in aiding to address this shortfall in understanding. This paper de- scribes a hybrid cellular automata model of the interaction between a growing tumour and cells of the innate and specific immune system including the effects of chemokines that builds on previous models of tumour-immune system interactions. In particular, the model is focused on the response of immune cells to tumour cells and how the dynamics of the tumour cells change due to the immune system of the host. We present results and predictions of in silico experiments including simulations of Kaplan-Meier survival-like curves.
Resumo:
Bone defects, especially large bone defects, remain a major challenge in orthopaedic surgery. Autologous bone transplantation is considered the most effective treatment, but insufficient donor tissue, coupled with concerns about donor site morbidity, has hindered this approach in large-scale applications. Alternative approaches include implanting biomaterials such as bioactive glass (BG), which has been widely used for bone defect healing, due to having generally good biocompatibility, and can be gradually biodegraded during the process of new bone formation. Mesoporous bioactive glass (MBG) is a newly developed bioactive glass which has been proven to have enhanced in-vitro bioactivity; however the in-vivo osteogenesis has not been studied. A critical problem in using the bone tissue engineering approach to restore large bone defects is that the nutrient supply and cell viability at the centre of the scaffold is severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 150-200µm. Cobalt ions has been shown to mimic hypoxia, which plays a pivotal role in coupling angiogenesis with osteogenesis in-vivo by activating hypoxia inducing factor-1α (HIF-1α) transcription factor, subsequently initiating the expression of genes associated with tissue regeneration. Therefore, one aim of this study is to investigate the in-vivo osteogenesis of MBG by comparison with BG and β-TCP, which are widely used clinically. The other aim is to explore hypoxia-mimicking biomaterials by incorporating Cobalt into MBG and β-TCP. MBG and β-TCP incorporated with 5% cobalt (5Co-MBG and 5CCP) have also been studied in-vivo to determine whether the hypoxic effect has a beneficial effect on the bone formation. The composition and microstructure of synthesised materials (BG, MBG, 5Co-MBG, 5CCP) were characterised, along with the mesopore properties of the MBG materials. Dissolution and cytotoxicity of the Co-containing materials were also investigated. Femoral samples with defects harvested at 4 and 8 weeks were scanned using micro-CT followed by processing for histology (H&E staining) to determine bone formation. Histology of MBG showed a slower rate of bone formation at 4 weeks than BG, however at 8 weeks it could be clearly seen that MBG had more bone formation. The in-vivo results show that the osteogenesis of MBG reciprocates the enhanced performance shown in-vitro compared to BG. Dissolution study showed that Co ions can be efficiently released from MBG and β-TCP in a controllable way. Low amounts of Co incorporated into the MBG and β-TCP showed no significant cytotoxicity and the Co-MBG powders maintained a mesopore structure although not as highly ordered as pure MBG. Preliminary study has shown that Co incorporated samples showed little to no bone formation, instead incurring high lymphocyte activity. Further studies need to be done on Co incorporated materials to determine the cause for high lymphocyte activity in-vivo, which appear to hinder bone formation. In conclusion, this study demonstrated the osteogenic activity of MBG and provided some valuable information of tissue reaction to Co-incorporated MBG and TCP materials.
Resumo:
Background We have previously demonstrated that human kidney proximal tubule epithelial cells (PTEC) are able to modulate autologous T and B lymphocyte responses. It is well established that dendritic cells (DC) are responsible for the initiation and direction of adaptive immune responses and that these cells occur in the renal interstitium in close apposition to PTEC under inflammatory disease settings. However, there is no information regarding the interaction of PTEC with DC in an autologous human context. Methods Human monocytes were differentiated into monocyte-derived DC (MoDC) in the absence or presence of primary autologous activated PTEC and matured with polyinosinic:polycytidylic acid [poly(I:C)], while purified, pre-formed myeloid blood DC (CD1c+ BDC) were cultured with autologous activated PTEC in the absence or presence of poly(I:C) stimulation. DC responses were monitored by surface antigen expression, cytokine secretion, antigen uptake capacity and allogeneic T-cell-stimulatory ability. Results The presence of autologous activated PTEC inhibited the differentiation of monocytes to MoDC. Furthermore, MoDC differentiated in the presence of PTEC displayed an immature surface phenotype, efficient phagocytic capacity and, upon poly(I:C) stimulation, secreted low levels of pro-inflammatory cytokine interleukin (IL)-12p70, high levels of anti-inflammatory cytokine IL-10 and induced weak Th1 responses. Similarly, pre-formed CD1c+ BDC matured in the presence of PTEC exhibited an immature tolerogenic surface phenotype, strong endocytic and phagocytic ability and stimulated significantly attenuated T-cell proliferative responses. Conclusions Our data suggest that activated PTEC regulate human autologous immunity via complex interactions with DC. The ability of PTEC to modulate autologous DC function has important implications for the dampening of pro-inflammatory immune responses within the tubulointerstitium in renal injuries. Further dissection of the mechanisms of PTEC modulation of autologous immune responses may offer targets for therapeutic intervention in renal medicine.
Resumo:
Chlamydial infections represent a major threat to the long-term survival of the koala and a successful vaccine would provide a valuable management tool. Vaccination however has the potential to enhance inflammatory disease in animals exposed to a natural infection prior to vaccination, a finding in early human and primate trials of whole cell vaccines to prevent trachoma. In the present study, we vaccinated both healthy koalas as well as clinically diseased koalas with a multi-subunit vaccine consisting of Chlamydia pecorum MOMP and NrdB mixed with immune stimulating complex as adjuvant. Following vaccination, there was no increase in inflammatory pathological changes in animals previously infected with Chlamydia. Strong antibody (including neutralizing antibodies) and lymphocyte proliferation responses were recorded in all vaccinated koalas, both healthy and clinically diseased. Vaccine induced antibodies specific for both vaccine antigens were observed not only in plasma but also in ocular secretions. Our data shows that an experimental chlamydial vaccine is safe to use in previously infected koalas, in that it does not worsen infection-associated lesions. Furthermore, the prototype vaccine is effective, as demonstrated by strong levels of neutralizing antibody and lymphocyte proliferation responses in both healthy and clinically diseased koalas. Collectively, this work illustrates the feasibility of developing a safe and effective Chlamydia vaccine as a tool for management of disease in wild koalas.
Resumo:
The 'open window' theory is characterised by short term suppression of the immune system following an acute bout of endurance exercise. This window of opportunity may allow for an increase in susceptibility to upper respiratory illness (URI). Many studies have indicated a decrease in immune function in response to exercise. However, many studies do not indicate changes in immune function past 2 hours after the completion of exercise, consequently failing to determine whether these immune cells numbers, or importantly their function, return to resting levels before the start of another bout of exercise. Ten male 'A' grade cyclists (age 24.2 +/- 5.3 years; body mass 73.8 +/- 6.5 kg; VO(2peak) 65.9 +/- 7.1 mL.kg(-1).min(-1)) exercised for two hours at 90% of their second ventilatory threshold. Blood samples were collected pre-, immediately post-, 2 hours, 4 hours, 6 hours, 8 hours, and 24 hours post-exercise. Immune variables examined included total leukocyte counts, neutrophil function (oxidative burst and phagocytic function), lymphocyte subset counts (CD4(+), CD8(+), and CD16(+)/56(+)), natural killer cell activity (NKCA), and NK phenotypes (CD56(dim)CD16(+), and CD56(bright)CD16(-)). There was a significant increase in total lymphocyte numbers from pre-, to immediately post-exercise (p<0.01), followed by a significant decrease at 2 hours post-exercise (p<0.001). CD4(+) T-cell counts significantly increased from pre-exercise, to 4 hours post- (p<0.05), and 6 hours post-exercise (p<0.01). However, NK (CD16(+)/56(+)) cell numbers decreased significantly from pre-exercise to 4 h post-exercise (p<0.05), to 6 h post-exercise (p<0.05), and to 8 h post-exercise (p<0.01). In contrast, CD56(bright)CD16- NK cell counts significantly increased from pre-exercise to immediately post-exercise (p<0.01). Neutrophil oxidative burst activity did not significantly change in response to exercise, while neutrophil cell counts significantly increased from pre-exercise, to immediately post-exercise (p<0.05), and 2 hours post-exercise (p<0.01), and remained significantly above pre-exercise levels to 8 hours post-exercise (p<0.01). Neutrophil phagocytic function significantly decreased from 2 hours post-exercise, to 6 hours post- (p<0.05), and 24 hours post-exercise (p<0.05). Finally, eosinophil cell counts significantly increased from 2 hours post to 6 hours post- (p<0.05), and 8 hours post-exercise (p<0.05). This is the first study to show changes in immunological variables up to 8 hours post-exercise, including significant NK cell suppression, NK cell phenotype changes, a significant increase in total lymphocyte counts, and a significant increase in eosinophil cell counts all at 8 hours post-exercise. Suppression of total lymphocyte counts, NK cell counts and neutrophil phagocytic function following exercise may be important in the increased rate of URI in response to regular intense endurance training.