661 resultados para TiO(2)

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalytic disinfection of Enterobacter cloacae and Enterobacter coli using microwave (MW), convection hydrothermal (HT) and Degussa P25 titania was investigated in suspension and immobilized reactors. In suspension reactors, MW-treated TiO(2) was the most efficient catalyst (per unit weight of catalyst) for the disinfection of E. cloacae. However, HT-treated TiO(2) was approximately 10 times more efficient than MW or P25 titania for the disinfection of E. coli suspensions in surface water using the immobilized reactor. In immobilized experiments, using surface water a significant amount of photolysis was observed using the MW- and HT-treated films; however, disinfection on P25 films was primarily attributed to photocatalysis. Competitive action of inorganic ions and humic substances for hydroxyl radicals during photocatalytic experiments, as well as humic substances physically screening the cells from UV and hydroxyl radical attack resulted in low rates of disinfection. A decrease in colony size (from 1.5 to 0.3 mm) was noted during photocatalytic experiments. The smaller than average colonies were thought to occur during sublethal (•) OH and O(2) (•-) attack. Catalyst fouling was observed following experiments in surface water and the ability to regenerate the surface was demonstrated using photocatalytic degradation of oxalic acid as a model test system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anatase TiO 2 material with hierarchically structured spheres consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSC s). Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron recombination rate compared to the conventional TiO 2 nanoparticles. In contrast, the effective electron diffusion coefficient, D n, was not sensitive to the variation of the TiO 2 morphology. The TiO 2 spheres showed the same Dn as that of the nanoparticles. The influence of TiCl 4 post-treatment on the conduction band of the TiO 2 spheres and on the kinetics of electron transport and back reactions was also investigated. It was found that the TiCl 4 post-treatment caused a downward shift of the TiO 2 conduction band edge by 30 meV. Meanwhile, a fourfold increase of the effective electron lifetime of the DSC was also observed after TiCl4 treatment. The synergistic effect of the variation of the TiO 2 conduction band and the electron recombination determined the open-circuit voltage of the DSC. © 2012 Wang et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategies for improving the photovoltaic performance of dye-sensitized solar cells (DSSCs) are proposed by modifying highly transparent and highly ordered multilayer mesoporous TiO 2 photoanodes through nitrogen-doping and top-coating with a light-scattering layer. The mesoporous TiO 2 photoanodes were fabricated by an evaporation-induced self-assembly method. In regard to the modification methods, the light-scattering layer as a top-coating was proved to be superior to nitrogen-doping in enhancing not only the power conversion efficiency but also the fill factor of DSSCs. The optimized bifunctional photoanode consisted of a 30-layer mesoporous TiO 2 thin film (4.15 μm) and a Degussa P25 light-scattering top-layer (4 μm), which gives rise to a ∼200% higher cell efficiency than for unmodified cells and a fill factor of 0.72. These advantages are attributed to its higher dye adsorption, better light scattering, and faster photon-electron transport. Such a photoanode configuration provides an efficient way to enhance the energy conversion efficiency of DSSCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Controlling the morphological structure of titanium dioxide (TiO 2) is crucial for obtaining superior power conversion efficiency for dye-sensitized solar cells. Although the sol-gel-based process has been developed for this purpose, there has been limited success in resisting the aggregation of nanostructured TiO2, which could act as an obstacle for mass production. Herein, we report a simple approach to improve the efficiency of dye-sensitized solar cells (DSSC) by controlling the degree of aggregation and particle surface charge through zeta potential analysis. We found that different aqueous colloidal conditions, i.e., potential of hydrogen (pH), water/titanium alkoxide (titanium isopropoxide) ratio, and surface charge, obviously led to different particle sizes in the range of 10-500 nm. We have also shown that particles prepared under acidic conditions are more effective for DSSC application regarding the modification of surface charges to improve dye loading and electron injection rate properties. Power conversion efficiency of 6.54%, open-circuit voltage of 0.73 V, short-circuit current density of 15.32 mA/cm2, and fill factor of 0.73 were obtained using anatase TiO 2 optimized to 10-20 nm in size, as well as by the use of a compact TiO2 blocking layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Controlling the morphology and size of titanium dioxide (TiO2) nanostructures is crucial to obtain superior photocatalytic, photovoltaic, and electrochemical properties. However, the synthetic techniques for preparing such structures, especially those with complex configurations, still remain a challenge because of the rapid hydrolysis of Ti-containing polymer precursors in aqueous solution. Herein, we report a completely novel approach-three- dimensional (3D) TiO2 nanostructures with favorable dendritic architectures-through a simple hydrothermal synthesis. The size of the 3D TiO2 dendrites and the morphology of the constituent nano-units, in the form of nanorods, nanoribbons, and nanowires, are controlled by adjusting the precursor hydrolysis rate and the surfactant aggregation. These novel configurations of TiO2 nanostructures possess higher surface area and superior electrochemical properties compared to nanoparticles with smooth surfaces. Our findings provide an effective solution for the synthesis of complex TiO2 nano-architectures, which can pave the way to further improve the energy storage and energy conversion efficiency of TiO 2-based devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral brannerite were analysed and related to the mineral structure. A comparison is made with the Raman spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of brannerite are in harmony with those of the uranyl oxyhydroxides. The mineral brannerite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.