7 resultados para Sarcopenia

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging in humans is associated with a loss in neuromuscular function and performance. This is related, in part, to the reduction in muscular strength and power caused by a loss of skeletal muscle mass (sarcopenia) and changes in muscle architecture. Due to these changes, the force-velocity (f-v) relationship of human muscles alters with age. This change has functional implications such as slower walking speeds. Different methods to reverse these changes have been investigated, including traditional resistance training, power training and eccentric (or eccentrically-biased) resistance training. This review will summarise the changes of the f-v relationship with age, the functional implications of these changes and the various methods to reverse or at least partly ameliorate these changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 298: R1485-R1495, 2010. First published April 14, 2010; doi:10.1152/ajpregu.00467.2009.-The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of today's elderly population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of nutrition is often on healthy diets and exercise to minimise the risk of developing lifestyle diseases such as cancer, diabetes and cardiovascular disease. However, during the shift into older years often the nutrition priorities change towards meeting increased nutrient needs with less energy requirements and minimising lean muscle loss. There are several causes of general malnutrition in the elderly that lead to depletion of muscle including starvation (protein-energy malnutrition), sarcopenia and cachexia. The prevalence of protein-energy malnutrition increases with age and the number of comorbidities. A range of simple and validated screening tools can be used to identify malnutrition in older adults e.g. MST, MNA-SF and ‘MUST’. Older adults should be screened for nutritional issues at diagnosis, on admission to hospitals or care homes and during follow up at outpatient or General Practitioner clinics, at regular intervals depending on clinical status. Early identification and treatment of nutrition problems can lead to improved outcomes and better quality of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two independent but inter-related conditions that have a growing impact on healthy life expectancy and health care costs in developed nations are an age-related loss of muscle mass (i.e., sarcopenia) and obesity. Sarcopenia is commonly exacerbated in overweight and obese individuals. Progression towards obesity promotes an increase in fat mass and a concomitant decrease in muscle mass, producing an unfavourable ratio of fat to muscle. The coexistence of diminished muscle mass and increased fat mass (so-called 'sarcobesity') is ultimately manifested by impaired mobility and/or development of life-style-related diseases. Accordingly, the critical health issue for a large proportion of adults in developed nations is how to lose fat mass while preserving muscle mass. Lifestyle interventions to prevent or treat sarcobesity include energy-restricted diets and exercise. The optimal energy deficit to reduce body mass is controversial. While energy restriction in isolation is an effective short-term strategy for rapid and substantial weight loss, it results in a reduction of both fat and muscle mass and therefore ultimately predisposes one to an unfavourable body composition. Aerobic exercise promotes beneficial changes in whole-body metabolism and reduces fat mass, while resistance exercise preserves lean (muscle) mass. Current evidence strongly supports the inclusion of resistance and aerobic exercise to complement mild energy-restricted high-protein diets for healthy weight loss as a primary intervention for sarcobesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aging is associated with increased circulating pro-inflammatory and lower anti-inflammatory cytokines. Exercise training, in addition to improving muscle function, reduces these circulating pro-inflammatory cytokines. Yet, few studies have evaluated changes in the expression of cytokines within skeletal muscle after exercise training. The aim of the current study was to examine the expression of cytokines both at rest and following a bout of isokinetic exercise performed before and after 12 weeks of resistance exercise training in young (n = 8, 20.3 ± 0.8 yr) and elderly men (n = 8, 66.9 ± 1.6 yr). Protein expression of various cytokines was determined in muscle homogenates. The expression of MCP-1, IL-8 and IL-6 (which are traditionally classified as ‘pro-inflammatory’) increased substantially after acute exercise. By contrast, the expression of the anti-inflammatory cytokines IL-4, IL-10 and IL-13 increased only slightly (or not at all) after acute exercise. These responses were not significantly different between young and elderly men, either before or after 12 weeks of exercise training. However, compared with the young men, the expression of pro-inflammatory cytokines 2 h post exercise tended to be greater in the elderly men prior to training. Training attenuated this difference. These data suggest that the inflammatory response to unaccustomed exercise increases with age. Furthermore, regular exercise training may help to normalize this inflammatory response, which could have important implications for muscle regeneration and adaptation in the elderly.