223 resultados para Protein-Tyrosine-Phosphatase

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS pathogenesis. The Protein tyrosine phosphatase receptor type C gene (PTPRC) encodes the T-cell receptor CD45. Variations within PTPRC have been previously associated with diseases of autoimmune origin such as type 1 diabetes mellitus and Graves' disease. We set out to investigate two variants within the PTPRC gene, C77G and C772T in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We employed high resolution melt analysis (HRM) and restriction length polymorphism (RFLP) techniques to determine genotypic and allelic frequencies. Our study found no significant difference between frequencies for PTPRC C77G by either genotype (Χ2 = 0.65, P = 0.72) or allele (Χ2 = 0.48, P = 0.49). Similarly, we did not find evidence to suggest an association between PTPRC C772T by genotype (Χ2 = 1.06, P = 0.59) or allele (Χ2 = 0.20, P = 0.66). Linkage disequilibrium (LD) analysis showed strong linkage disequilibrium between the two tested markers (D' = 0.9970, SD = 0.0385). This study reveals no evidence to suggest that these markers are associated with MS in the tested Australian Caucasian population. Although the PTPRC gene has a significant role in regulating CD4+ and CD8+ autoreactive T-cells, interferon-beta responsiveness, and potentially other important processes, our study does not support a role for the two tested variants of this gene in MS susceptibility in the Australian population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background There is increasing evidence supporting the concept of cancer stem cells (CSCs), which are responsible for the initiation, growth and metastasis of tumors. CSCs are thus considered the target for future cancer therapies. To achieve this goal, identifying potential therapeutic targets for CSCs is essential. Methods We used a natural product of vitamin E, gamma tocotrienol (gamma-T3), to treat mammospheres and spheres from colon and cervical cancers. Western blotting and real-time RT-PCR were employed to identify the gene and protein targets of gamma-T3 in mammospheres. Results We found that mammosphere growth was inhibited in a dose dependent manner, with total inhibition at high doses. Gamma-T3 also inhibited sphere growth in two other human epithelial cancers, colon and cervix. Our results suggested that both Src homology 2 domain-containing phosphatase 1 (SHP1) and 2 (SHP2) were affected by gamma-T3 which was accompanied by a decrease in K- and H-Ras gene expression and phosphorylated ERK protein levels in a dose dependent way. In contrast, expression of self-renewal genes TGF-beta and LIF, as well as ESR signal pathways were not affected by the treatment. These results suggest that gamma-T3 specifically targets SHP2 and the RAS/ERK signaling pathway. Conclusions SHP1 and SHP2 are potential therapeutic targets for breast CSCs and gamma-T3 is a promising natural drug for future breast cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use. © 2011 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin’s lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin’s lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis. Results Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL. Conclusions The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efforts to identify genes other than HLA-B27 in AS have been driven by the strength of the evidence from genetic epidemiology studies indicating that HLA-B27, although a major gene in AS, is clearly not the only significant gene operating. This is the case for both genetic determinants of disease-susceptibility and phenotypic characteristics such as disease severity and associated disease features. In this chapter the genetic epidemiology of AS and the gene-mapping studies performed to date will be reviewed and the future direction of research in this field discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods: A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). Results: A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. Conclusions: We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-1 gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-1A. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both ankylosing spondylitis (AS) and rheumatoid arthritis (RA) are common, highly heritable conditions, the pathogenesis of which are incompletely understood. Gene-mapping studies in both conditions have over the last couple of years made major breakthroughs in identifying the mechanisms by which these diseases occur. Considering RA, there is an over-representation of genes involved in TNF signalling and the NFκB pathway that have been shown to influence the disease risk. There is also considerable sharing of susceptibility genes between RA and other autoimmune diseases such as systemic lupus erythematosus, type 1 diabetes, autoimmune thyroid disease and celiac disease, with thus far little overlap with AS. In AS, genes involved in response to IL12/IL23, and in endoplasmic reticulum peptide presentation, have been identified, but a full genomewide association study has not yet been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. To confirm the association of a functional single-nucleotide polymorphism (SNP), C1858T (rs2476601), in the PTPN22 gene of British Caucasian rheumatoid arthritis (RA) patients and to evaluate its influence on the RA phenotype. Methods. A total of 686 RA patients and 566 healthy volunteers, all of British Caucasian origin, were genotyped for C1858T polymorphism by PCR-restriction fragment length polymorphism assay. Data were analysed using SPSS software and the χ 2 test as applicable. Results. The PTPN22 1858T risk allele was more prevalent in the RA patients (13.9%) compared with the healthy controls (10.3%) (P = 0.008, odds ratio 1.4, 95% confidence interval 1.09-1.79). The association of the T allele was restricted to those with rheumatoid factor (RF)-positive disease (n = 524, 76.4%) (P = 0.004, odds ratio 1.5, 95% confidence interval 1.1-1.9). We found no association between PTPN22 and the presence of the HLA-DRB1 shared epitope or clinical characteristics. Conclusions. We confirmed the previously reported association of PTPN22 with RF-positive RA, which was independent from the HLA-DRB1 genotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ConA-induced cell surface activation of pro-matrix metalloproteinase-2 (pro-MMP-2) by MDA-MB-231 human breast cancer cells is apparently mediated by up-regulation of membrane type 1 MMP (MT1-MMP) through transcriptional and posttranscriptional mechanisms. Here, we have explored the respective roles of cell surface clustering and protein tyrosine phosphorylation in the ConA- induction effects. Treatment with succinyl-ConA, a variant lacking significant clusterability, partially stimulated MT1-MMP mRNA and protein levels but did not induce MMP-2 activation, suggesting that clustering contributes to the transcriptional regulation by ConA but appears to be critical for the nontranscriptional component. We further found that genistein, an inhibitor of tyrosine phosphorylation, blocked ConA-induced pro-MMP-2 activation and ConA-induced MT1-MMP mRNA level in a dose-dependent manner, implicating tyrosine phosphorylation in the transcriptional aspect. This was confirmed by the dose-dependent promotion of pro-MMP-2 activation by sodium orthovanadate in the presence of suboptimal concentrations of ConA (7.5 μg/ml), with optimal effects seen at 25 μg/g orthovanadate. Genistein did not inhibit the ConA potentiation of MMP-2 activation in MCF-7 cells, in which transfected MT1-MMP is driven by a heterologous promoter, supporting the major implication of phosphotyrosine in the transcriptional component of ConA regulation. These data describe a major signaling event upstream of MT1- MMP induction by ConA and set the stage for further analysis of the nontranscriptional component.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10-5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility. © 2011 Ma et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of patients with non-small-cell lung cancer (NSCLC) present with advanced disease, with targeted therapies providing some improvement in clinical outcomes. The epidermal growth factor receptor (EGFR) tyrosine kinase (TK) plays an important role in the pathogenesis of NSCLC. Tyrosine kinase inhibitors (TKIs), which target the EGFR TK domain, have proven to be an effective treatment strategy; however, patient responses to treatment vary considerably. Therefore, the identification of patients most likely to respond to treatment is essential to optimise the benefit of TKIs. Tumour-associated activating mutations in EGFR can identify patients with NSCLC who are likely to have a good response to TKIs. Nonetheless, the majority of patients relapse within a year of starting treatment. Studies of tumours at relapse have demonstrated expression of a T790M mutation in exon 20 of the EGFR TK domain in approximately 50% of cases. Although conferring resistance to reversible TKIs, these patients may remain sensitive to new-generation irreversible/panerb inhibitors. A number of techniques have been employed for genotypic assessment of tumourassociated DNA to identify EGFR mutations, each of which has advantages and disadvantages. This review presents an overview of the current methodologies used to identify such molecular markers. Recent developments in technology may make the monitoring of changes in patients' tumour genotypes easier in clinical practice, which may enable patients' treatment regimens to be tailored during the course of their disease, potentially leading to improved patient outcomes.