124 resultados para Lignocellulosic ethanol

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2007, the Queensland University of Technology (QUT) received funding from the Australian Government through the NCRIS program and from the then Queensland Government Department of State Development to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugar cane bagasse. This facility is being constructed adjacent to the Racecourse Sugar Mill in Mackay and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). The MRBPP will be capable of processing biomass through a pressurised pretreatment reactor and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products will also be produced at a pilot scale for product development and testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As oil use increases at a rate unsustainable for the environment and unmatchable by current levels of oil production, a major shift towards renewable energy is necessary. By expanding the current knowledge of lignin biosynthesis and its manipulation in sugarcane, this PhD contributes to the production of economically viable second generation bioethanol, a fuel produced from plant biomass. The findings of this thesis contribute to the limited knowledge of lignin biosynthesis and deposition in sugarcane, and the application of biotechnology to produce sugarcane, and the resulting bagasse, with a modified cell wall. Reducing or modifying the lignin content in the cell wall of bagasse can reduce production costs and increase yields of bioethanol. This makes bioethanol more economically competitive with oil as an alternative energy source. A move to using bioethanol over fossil based transport fuels will have global economic and environmental benefits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lignocellulosic waste materials are the most promising feedstock for generation of a renewable, carbon-neutral substitute for existing liquid fuels. The development of value-added products from lignin will greatly improve the economics of producing liquid fuels from biomass. This review gives an outline of lignin chemistry, describes the current processes of lignocellulosic biomass fractionation and the lignin products obtained through these processes, then outlines current and potential value-added applications of these products, in particular as components of polymer composites. Research highlights The use of lignocellulosic biomass to produce platform chemicals and industrial products enhances the sustainability of natural resources and improves environmental quality by reducing greenhouse and toxic emissions. In addition, the development of lignin based products improves the economics producing liquid transportation fuel from lignocellulosic feedstock. Value adding can be achieved by converting lignin to functionally equivalent products that rely in its intrinsic properties. This review outlines lignin chemistry and some potential high value products that can be made from lignin. Keywords: Lignocellulose materials; Lignin chemistry; Application

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SRI has examined the organosolv (organic solvation) pulping of Australian bagasse using technology supplied by Ecopulp. In the process, bagasse is reacted with aqueous ethanol in a digester at elevated temperatures (between 150ºC and 200ºC). The products from the digester are separated using proprietary technology before further processing into a range of saleable products. Test trials were undertaken using two batch digesters; the first capable of pulping about 25 g of wet depithed bagasse and the second, larger samples of about 1.5 kg of wet depithed bagasse. From this study, the unbleached pulp produced from fresh bagasse did not have very good strength properties for the production of corrugated medium for cartons and bleached pulp. In particular, the lignin contents as indicated by the Kappa number for the unbleached pulps are high for making bleached pulp. However, in spite of the high lignin content, it is possible to bleach the pulp to acceptable levels of brightness up to 86.6% ISO. The economics were assessed for three tier pricing (namely low, medium and high price). The economic return for a plant that produces 100 air dry t/d of brownstock pulp is satisfactory for both high and medium pricing levels of pricing. The outcomes from the project justify that work should continue through to either pilot plant or upgraded laboratory facility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge of the 21st century will be to generate transportation fuels using feedstocks such as lignocellulosic waste materials as a substitute for existing fossil and nuclear fuels. The advantages of lignocellulosics as a feedstock material are that they are abundant, sustainable and carbon-neutral. To improve the economics of producing liquid transportation fuels from lignocellulosic biomass, the development of value-added products from lignin, a major component of lignocellulosics, is necessary. Lignins produced from black liquor through the fractionation of sugarcane bagasse with soda and organic solvents have been characterised by physical, chemical and thermal means. The soda lignin fractions have different physico-chemical and thermal properties from one another. Some of these properties have been compared to bagasse lignin extracted with aqueous ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers.